
Final report: AFOSR Grant FA9550-07-1-0171

Developing a control strategy for jets in crossflow using direct
numerical simulation

Krishnan Mahesh
Aerospace Engineering & Mechanics

University of Minnesota



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
29 MAR 2010 2. REPORT TYPE 

3. DATES COVERED 
    

4. TITLE AND SUBTITLE 
Developing a control strategy for jets in crossflow using direct numerical 
simulation 

5a. CONTRACT NUMBER 
FA9550-07-1-0171 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 
Krishnan Mahesh 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of Minnesota,107 AKERMAN HALL,110 UNION STREET, 
SE,MINNEAPOLIS,MN,55455 

8. PERFORMING ORGANIZATION REPORT 
NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited. 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
Direct numerical simulation is used to study the mixing of a passive scalar by a vortex ring issuing from a
nozzle into stationary fluid. The ?formation number? (Gharib et al 1998), is found to be 3.6. Simulations
are performed for a range of stroke ratios encompassing the formation number, and the effect of stroke
ratio on entrainment, and mixing is examined. When the stroke ratio is greater than the formation
number, the resulting vortex ring with trailing column of fluid is shown to be less effective, at mixing and
entrainment. As the ring forms, ambient fluid is entrained radially into the ring from the region outside the
nozzle exit. This entrainment stops once the ring forms, and is absent in the trailing column. The rate of
change of scalar containing fluid is studied for its dependence on stroke ratio. This rate varies linearly with
stroke ratio until the formation number, and falls below the linear curve for stroke ratios greater than the
formation number. This behavior is explained by considering the entrainment to be a combination of that
due to the leading vortex ring, and that due to the trailing column. For stroke ratios less than the formation
number, the trailing column is absent, and the size of the vortex ring increases with stroke ratio, resulting
in increased mixing. For stroke ratios above the formation number, the leading vortex ring remains the
same, and the length of the trailing column increases with stroke ratio. The overall entrainment decreases
as a result. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT 

18. NUMBER
OF PAGES 

107 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 



Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



1



Chapter 1

Introduction

We have used direct numerical simulation to study axial pulsing as a means
to control jets in crossflow. This work was supported by the AFOSR from
3/1/2007 to 9/30/2009, and examined the following issues:

• The optimal Strouhal number observed in experiment based on jet exit
velocity and diameter varies from 0.004 to 0.22. This large variation
suggests that the Strouhal number based on jet exit conditions is not
an appropriate scaling for the optimum frequency. The question was
asked: ‘How then should the frequency be scaled?’

• Low frequency pulsing is sometimes seen to result in a dramatic split-
ting of the jet into two streams, and visually increasing its penetration
into the crossflow. It was unclear however, if mixing with the cross-
flow correspondingly increases. The question was asked: ‘What are the
detailed dynamics induced by pulsing, and how effective are they in
mixing?’

• The work also further developed the DNS/LES methodology to predict
pulsed transverse jets.

1.1 Motivation

Jets in cross-flow are central to a variety of important applications such
as dilution holes in combustors, fuel injectors, thrust vectoring of tur-
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(a) (b)

Figure 1.1: (a): Instantaneous snapshot of contours of velocity magnitude
from simulations in a gas–turbine combustor (Mahesh et al. 2004). (b):
Turbine blade with film–cooling holes visible.

bojets, separation control in micro–air vehicles and V/STOL aircraft.
Figure 1.1 shows the instantaneous flow inside a gas–turbine combus-
tor. The prominence of the dilution jets (seen at the top and bottom)
is apparent. Mixing with the dilution jets makes the combustor exit
temperature more uniform. As a result, higher mean combustor tem-
perature can be attained, without adversely affecting the downstream
turbine blades. In the primary combustion zone, dilution jets are used
to change the ratio of air to fuel, and thereby reduce NOX levels. Fuel
injectors are another important application of jets in cross-flow. Here,
the challenge is to better mix fuel and oxidizer prior to ignition, so that
local regions of fuel-rich mixture are avoided. Film–cooling is another
application, where low velocity jets are used to cover turbine blades
(figure 1.1) with cold air, and thereby cool them.

There is considerable incentive to develop the ability to actively control
jets in crossflow. Different combustion regimes cause different pollu-
tants to form. For example, Bowman (1992) notes that NOX emission
is usually minimized under conditions which cause carbon monoxide
emissions to go up. Active control of dilution air mixing can therefore
be used to optimize air fuel mixing at high power to reduce NOX and
de–tune it at low power to reduce CO (Karagozian et al. 2003). In
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Figure 1.2: (a) Optimal entrainment by vortex rings in quiescent air. The
dotted lines correspond to two different Schmidt numbers. Note the optimal
stroke ratio – the ‘formation number’ separates two different physical regimes
at both Schmidt numbers. (b) Vortex ring in crossflow. Regime map showing
three regimes with different flow structure and entrainment characteristics.

film–cooling applications, actively controlled cooling jets can be used
to enhance cooling efficiency by reducing flow rates of bleed air, and
prolonging turbine–blade life. In land–based power plants, multiple
fuel systems are often used to handle different combustion regimes.
The resulting design is complicated and requires high levels of mainte-
nance (Cohen, personal communication). Actively controlled dilution
jets could allow different combustion regimes to be obtained using a
single fuel system.

1.2 Summary of results

The main idea pursued was that pulsing generates vortex rings and the ef-
fect of pulsing on transverse jets can therefore be explained by studying the
behavior of vortex rings in crossflow. A regime map was proposed that (i)
collapses optimal conditions from both simulation and experiment, and (ii)
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Figure 1.3: Low Reynolds number simulations of pulsed jet in crossflow.
Contours of z vorticity (a) and scalar concentration (b) in symmetry plane.
Ring velocity ratio, rring = 4.5 and duty cycle is at 20%. Optimal conditions

are shown. (c) Optimal pulsing conditions from a number of simulations are
plotted on the regime map.

allows a priori estimations of optimal conditions. This was accomplished in
the following stages:

• DNS was used to study single vortex rings in quiescent air. Mixing and
entrainment were seen to be maximized at a stroke ratio that separated
two regimes – a vortex ring and vortex ring with trailing column (figure
1.2a). This behavior was independent of Schmidt number, and was
explained.

• The effect of crossflow on single vortex rings was considered. Three
distinct flow regimes with very different mixing characteristics were
identified - a vortex ring which tilts upstream, a vortex ring with trail-
ing column which tilts downstream, and horseshoe vortices which travel
downstream.

• A map of velocity ratio versus stroke ratio was defined, along with
transition boundaries between the different regimes (figure 1.2b). The
detailed physical mechanisms of momentum transport and scalar mix-
ing were explained.

• DNS of pulsed jets in crossflow with square wave excitation were per-
formed. Optimal pulsing conditions were identified from the DNS, and
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their physical behavior was shown to be similar to that seen in experi-
ment (figure 1.3a,b).

• The pulsed jets were interpreted by defining equivalent stroke ratios and
velocity ratios for the vortex rings produced. The optimal combination
of stroke ratio and velocity ratio was plotted on the regime map. All
optimal conditions were shown to lie on a line in the regime map (figure
1.3c).

• Physically, optimal conditions were shown to correspond to upstream
tilted single vortex rings without any trailing column. These upstream
tilted single rings penetrate deeper into the crossflow and a second
stream of jet fluid is obtained near the wall due to the wake of these
rings (figure 1.3a,b).

• Data from experiments by Shapiro et al.(2006) and Eroglu & Brieden-
thal (2001) were interpreted in terms of equivalent stroke and velocity
ratios and plotted on the regime map. The optimal experimental con-
ditions fall on the optimal curve obtained from the simulations (figure
1.4).

• The proposed regime map allows the effects of experimental parameters
such as pulse frequency, duty cycle, modulation, pulse energy etc. to
all be predicted by determining their effect on the equivalent stroke
and velocity ratios. (1.5). The regime map is therefore proposed
as a reliable means to estimate optimal pulsing conditions.

1.2.1 Publications

The above work has resulted in the following journal and refereed conference
publications. Also, Mahesh has been invited to write a review paper on jets
in crossflow for the 2011 issue of the Annual Review of Fluid Mechanics.

• R. Sau & K. Mahesh, 2010, Optimization of pulsed jets in crossflow.
Accepted for publication in Journal of Fluid Mechanics.

• R. Sau & K. Mahesh, 2008, Dynamics and mixing of vortex rings in
crossflow. Journal of Fluid Mechanics, 604: 389-409.
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Figure 1.4: (a) Figure 4 from experiment of Shapiro et al. (2006), (case 1,
U

′

j,rms = 1.5 m/s) with forcing frequency f = 110 Hz for duty cycle ranging
from 10% to 50%. Note maximum jet penetration occurs at 30% duty cycle
and corresponds to optimal pulse width (τ = 3 ms). (b) The experimental
conditions for varying pulse width or duty cycle are transformed onto regime
map at four frequencies, where the filled symbols show the optimal condi-
tions. (c) Optimal conditions from experiments (red) are compared along
with simulations (black).

• R. Sau & K. Mahesh, 2007, Passive scalar mixing in vortex rings. Jour-

nal of Fluid Mechanics, 582: 449-461.

• R. Sau & K. Mahesh, 2009, Optimization of pulsed jets in crossflow.
AIAA Paper 2009-777.

• R. Sau & K. Mahesh, 2007, The effect of crossflow on vortex rings.
AIAA Paper 2007-1316.

1.2.2 Personnel supported under this grant

Mr. Rajes Sau worked on this project as a PhD student under the guidance
of the PI. Mr. Sau will defend his dissertation on the same topic in June
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Figure 1.5: Optimal pulsing conditions from several experiments are plotted
along with the optimal data from simulations. Note that the data collapse
onto a curve.

2010, and will work in industry thereafter (he has obtained employment).

1.2.3 Talks

• K. Mahesh, 2010, Mechanical Engineering Department, University of
Minnesota, Simulation and control of jets in crossflow.

• K. Mahesh, 2009, Sandia National Laboratories, Simulation and control
of jets in crossflow.

• R. Sau & K. Mahesh, 2009 AIAA Orlando Meeting, Optimization of
pulsed jets in crossflow.

• K. Mahesh, 2009, Mechanical Engineering Department, Stanford Uni-
versity, Simulation and control of jets in crossflow.

• R. Sau & K. Mahesh, 2008 APS DFD Meeting, Optimization of pulsed
jets in crossflow.

• R. Sau & K. Mahesh, 2007 APS DFD Meeting, Vortex ring dynamics
and mixing in crossflow.
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• R. Sau & K. Mahesh, 2007 AIAA Reno Meeting, The effect of crossflow
on vortex rings.

• R. Sau & K. Mahesh, 2006 APS DFD Meeting, Passive scalar mixing
in vortex rings

1.2.4 Honors and awards

Mahesh was elected Associate Fellow of the AIAA and promoted to Full Pro-
fessor in 2009. Mr. Rajes Sau received the Doctoral Dissertation Fellowship
from the University of Minnesota in 2009.

1.3 Overview

The rest of this report describes work from our publications on mixing by
individual vortex rings in quiescent air (Chapter 2), the effect of crossflow on
individual vortex rings (Chapter 3) and pulsed jets in crossflow (Chapter 4).
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Chapter 2

Passive scalar mixing in vortex
rings

2.1 Abstract

Direct numerical simulation is used to study the mixing of a passive scalar
by a vortex ring issuing from a nozzle into stationary fluid. The ‘formation
number’ (Gharib et al 1998), is found to be 3.6. Simulations are performed for
a range of stroke ratios encompassing the formation number, and the effect of
stroke ratio on entrainment, and mixing is examined. When the stroke ratio
is greater than the formation number, the resulting vortex ring with trailing
column of fluid is shown to be less effective, at mixing and entrainment. As
the ring forms, ambient fluid is entrained radially into the ring from the region
outside the nozzle exit. This entrainment stops once the ring forms, and is
absent in the trailing column. The rate of change of scalar containing fluid
is studied for its dependence on stroke ratio. This rate varies linearly with
stroke ratio until the formation number, and falls below the linear curve for
stroke ratios greater than the formation number. This behavior is explained
by considering the entrainment to be a combination of that due to the leading
vortex ring, and that due to the trailing column. For stroke ratios less than
the formation number, the trailing column is absent, and the size of the
vortex ring increases with stroke ratio, resulting in increased mixing. For
stroke ratios above the formation number, the leading vortex ring remains
the same, and the length of the trailing column increases with stroke ratio.
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The overall entrainment decreases as a result.

2.2 Introduction

The motion of a fluid column of length L through an orifice of diameter D
produces a vortex ring. Vortex rings have been studied by many researchers,
and a large volume of work exists (see e.g. the review by Shariff and Leonard,
1992). This paper is motivated by experimental observations on the use of
pulsing to control the mixing characteristics of free jets (e.g. Vermeulen et al

1986, 1992), and jets in crossflow (e.g. Johari et al. 1999, Eroglu et al. 2001,
M’Closkey et al. 2002). Pulsing of the jet is seen to result in the formation of
vortex rings, whose strength and spacing are dictated by the frequency and
duty cycle of the jet. The resulting flow appears to improve mixing rate and
increase the entrainment. This paper therefore examines the basic problem
of how a vortex ring mixes with stationary fluid.

Most past work have studied vortex ring formation and their kinematics
(e.g. Maxworthy 1977 and Didden 1979). The temporal evolution of vortex
circulation during ring formation (Didden 1979; Glezer 1988), and during the
post-formation phase (Maxworthy 1972) have been discussed. The total cir-
culation and impulse have been shown to be approximately equal, for nozzles
with, and without a wall at the exit plane (James & Madnia 1996). Gharib
et al. (1998) show that around a stroke ratio of 4, the flow transitions from a
coherent vortex ring, to a ring with a trailing jet. They refer to this critical
stroke ratio as the ‘formation number’. The vortex ring is shown to achieve
its maximum circulation at the formation number. Universality of the forma-
tion number was confirmed by generating vortex rings with different nozzle
exit diameters, boundaries and non-impulsive piston velocities. Rosenfeld et
al. (1998) numerically studied the effect of time history of velocity, velocity
profile, vortex generator geometry and Reynolds number on the formation
number. They found that the formation number appears independent of
Reynolds number.

The entrainment characteristics of vortex rings were studied by Müller
& Didden (1980) who estimated the entrainment fraction to be approxi-
mately 40% using a dye marker in their experiment. Dabiri & Gharib (2004)
experimentally examined entrainment; their computed entrainment fraction
is found to lie within 30% to 40% for stroke ratios of 2 and 4. They used
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counter–flow protocols to improve the entrainment fraction up to 65%. Their
experiments do not resolve the convective fluid entrainment that occurs dur-
ing the vortex ring formation. A computational study by James & Madnia
(1996) examined entrainment and scalar mixing by vortex rings. However,
their simulations were limited to small stroke ratios (L/D < 4), and do not
comment on the effect of stroke ratio.

The objective of the present investigation is to study passive scalar mix-
ing, and entrainment by vortex rings in stationary fluid, for a range of stroke
ratios encompassing the formation number. The entrainment of ambient
fluid during ring formation is studied. Mixing and entrainment processes
are contrasted between the two regimes of stroke ratios defined by formation
number. The flow field in these two regimes is characterized by two different
structures - single vortex ring and vortex ring with trailing column. We seek
to find the structure which is more efficient in mixing with ambient fluid.
The effect of Schmidt number on this behavior is also considered.

The paper is organized as follows. The problem is defined and simulation
details are described in §2.3. Simulation results for the vorticity field, cir-
culation, and entrainment fraction are compared to experimental results in
§2.4.1. In §2.4.2, passive scalar mixing in vortex rings is examined in detail.
Entrainment during ring formation is discussed in §2.4.2. The effect of stroke
ratio on rate of volume mixing is studied in §2.4.2. The paper ends with a
brief summary in §2.5.

2.3 Simulation details

2.3.1 Problem Statement

Figure 2.1(a) shows a schematic of the problem, where a slug of fluid is
pushed through a cylindrical nozzle of 3 : 1 diameter ratio. The origin is
located at the center of the nozzle exit plane, and the nozzle axis points in
the y− direction. The piston is modeled by specifying a time dependent
velocity field (square wave pulse) at the nozzle inlet (e.g. Rosenfeld et al.

1998). A top–hat velocity profile (Uin) is specified at the nozzle inflow for a
duration of time τ (referred to as piston time duration). The inflow velocity
is zero for time greater than τ . The stroke length and non–dimensional time
are determined using the mean nozzle exit velocity, U exit which denotes the
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Figure 2.1: (a) A schematic of the problem. Note the schematic of the vortex
ring generated by the fluid emerging out of the nozzle exit. (b) A horizontal
slice of the mesh.

equivalent piston velocity. The stroke length L = U exitτ . The stroke ratio
(L/D), defined as the ratio of the stroke length(L) to the nozzle exit diameter
(D) is equal to U exitτ/D. The stroke ratio is varied by changing the piston
time duration τ . The Reynolds number of the flow based on U exit and nozzle
exit diameter (D) is 600. The non-dimensional time, t∗ = U exitt/D is referred
to as formation time (Gharib et al. 1998). The simulations are performed
for stroke ratios varying from 1.6 to 8.

2.3.2 Numerical details

The numerical scheme solves the incompressible Navier Stokes equations

∂ui

∂t
+

∂uiuj

∂xj
= −

∂p

∂xi
+ ν

∂2ui

∂xjxj
,

∂ui

∂xi
= 0. (2.1)

on unstructured grids. Here ui, p and ν denote the velocities, pressure and
kinematic viscosity respectively. The density of the fluid is assumed constant
and is absorbed into the pressure. The numerical scheme has been described
in detail by Mahesh et al. (2004). The algorithm stores the Cartesian ve-
locities and the pressure at the centroids of the cells (control volumes) and
the face normal velocities are stored independently at the centroids of the
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faces. The scheme is a predictor–corrector formulation which emphasizes
discrete energy conservation on unstructured grids. This property makes the
algorithm robust at high Reynolds numbers without numerical dissipation.
The predicted velocities at the control volume centroids are obtained using
the viscous and the non–linear terms of equation 2.1 which are then used to
predict the face normal velocities on the faces. The predicted face normal
velocity is projected so that continuity is discretely satisfied. This yields a
Poisson equation for pressure which is solved iteratively using a multigrid
approach. The pressure field is used to update the Cartesian control vol-
ume velocities. Implicit time–stepping is performed using a Crank–Nicholson
scheme. The algorithm has been validated for a variety of problems over a
range of Reynolds numbers (Mahesh et al. 2004).

The passive scalar is computed by solving the advection-diffusion equation

∂C

∂t
+

∂Cuj

∂xj

=
ν

Sc

∂2C

∂xjxj

, (2.2)

where C is the concentration of the scalar. The fluid emerging from the
nozzle-exit has a value of C = 1.0, and the ambient fluid has C = 0.0. The
spatial derivatives are computed using a predictor–corrector method (Mup-
pidi 2006). The scalar field is first advanced using a second–order central
difference scheme. The predicted scalar field is corrected in regions of scalar
overshoot using a first order upwind scheme. This corrector step ensures
that locally, the passive scalar concentration is bounded (i.e. C ∈ [0, 1]).
The scalar is advanced in time explicitly using second order Adam-Bashforth
scheme in an inner loop.

The computational domain above the nozzle exit spans 16D×24D×16D.
The domain includes the 10D length of nozzle upstream of the nozzle exit.
The computational mesh is unstructured and hexahedral elements are used.
Figure 2.1(b) shows a horizontal slice of the mesh. Note the very fine elements
near the nozzle exit. The boundary conditions are specified as follows. Wall
boundary conditions (i.e. ui = 0) are specified at the nozzle wall, outer walls
( x/D = ±8 and z/D = ±8) and wall at the nozzle exit plane. The wall
at the nozzle exit plane refers to y/D = 0 plane excluding the nozzle–exit
surface. At the nozzle inflow plane (y/D = −10 plane), a top hat velocity
profile is specified:

vinflow =

{

Uin if t <= τ
0 if t > τ
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Figure 2.2: The velocity profile at the exit of the nozzle: − ◦ −, t∗ = 0.50;
− ⋄ −, t∗ = 0.95; − ⊳ −, t∗ = 1.50; − ⊲ −, t∗ = 2.50; −△−, t∗ = 4.00; −2−,
t∗ = 5.50;

The corresponding velocity profile at the nozzle exit is shown in figure 2.2
for L/D = 6. A zero-gradient boundary condition is used at the outflow
(y/D = 24).

2.4 Results

2.4.1 Comparison to experiment

The simulation results are compared to experiment. The total circulation
in the flow is compared to Gharib et al. (1998). This comparison serves to
validate the present simulation, as well as to obtain the formation number
for the nozzle-wall configuration. We also compare diffusive entrainment by
the vortex ring to the experiments of Dabiri et al. (2004).

Formation number

Figure 2.3(a) shows vorticity contours for two vortex rings generated by
stroke ratios of 6 and 2 respectively. In the case of higher stroke ratio, a
vortex ring followed by a trailing column of fluid is generated (figure 2.3a).
The time evolution of total circulation, and vortex circulation are shown in
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Figure 2.3: (a) Evolution of vorticity field during formation and post-
formation phases of the vortex ring for L/D = 6 (top row) and L/D = 2
(bottom row). The formation time instants are 3.0, 4.0, 7.0 and 10.0 (from
left). Note the vortex ring with a ‘trailing column’ for the higher stroke ra-
tio. (b) Time evolution of the total and vortex circulation for L/D = 6: ⋄,
experiment (Gharib et al., 1998);−◦-, simulation.

figure 2.3(b) for L/D = 6. Total circulation is computed by integrating the
vorticity in the plane, z = 0 above the nozzle exit. Vortex circulation is
estimated only after it clearly pinches off from the trailing jet. The vorticity
contour level that is used to determine the pinch off, is set to 5% of the
maximum vorticity contour level. The pinch-off occurs in this case at around
t∗ = 11. Thus, the leading vortex circulation is estimated after t∗ = 11
onwards. The formation number defined by Gharib et al. (1998), is ‘the
formation time when the total circulation imparted by the discharging flow
is equal to the circulation of the pinched off vortex ring’. Their study showed
the existence of a limiting value for the stroke ratio (L/D), above which the
vortex ring does not absorb all the vorticity of the discharged fluid. They
conclude that there is a maximum value of circulation that a vortex ring
can acquire as the stroke ratio increases. This maximum is reached at a
piston stroke ratio of L/D ≈ 4. If the piston stroke ratio is higher than the
formation number, the excess circulation accumulates in the jet like trailing
column as shown in figure 2.3(a). For stroke ratio less than formation num-
ber, a single vortex ring is generated leaving behind a quiescent flow. In the
simulation, the formation number is found to be approximately 3.6 from the
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circulation plot in figure 2.3(b). Also shown are results from Gharib et al’s
experiments (1998). Good agreement with experiment is observed.

Diffusive entrainment

Dabiri et al. (2004) computed the diffusive entrainment by an isolated vortex
ring after formation. The difficulty in computing entrainment is the proper
definition of the unsteady boundary of the vortex ring as it propagates. This
difficulty can be overcome by changing the frame of reference. Figure 2.4(a)
shows the instantaneous streamline in the global frame of reference. The
boundary of the vortex ring is not well defined. Figure 2.4(b) shows the
instantaneous streamlines in a reference frame that moves with the vortex
ring. This is done by superimposing a free stream axial flow with magnitude
equal to the measured ring axial velocity. The ring velocity was measured at
the axial location of the maximum vorticity in the core of the vortex ring.
The bounding streamline, ‘vortex bubble’ defines the extent of the vortex
ring visibly. The ‘vortex bubble’ is approximated as an ellipsoid to compute
the volume. The volume of this ellipsoidal vortex bubble VB(t) is computed
from the measured locations of the front and rear stagnation points as well as
radial extent of the ring. Such visualization and measurement of the volume
of the ‘vortex bubble’ is suggested by Dabiri et al. (2004).

Entrainment fluid fraction η(t) is defined by η(t) = VB(t)−VN (t)
VB(t)

, where

VB(t) is the volume of the vortex bubble and VN(t) = A
∫ τ
0 Uindτ is the

fluid volume supplied by the nozzle. Note that the entrainment is computed
using the difference between bubble volume and the ejected volume. This
definition assumes that nearly all of the ejected fluid is entrained into the ring,
for low stroke ratios. Figure 2.4(c) shows the entrainment fraction computed
for stroke ratios L/D = 2, 4 and plotted against the non-dimensional time
t∗. The transient volumes are computed much after the formation phase so
that the ‘vortex bubble’ is completely formed. Again the objective here is
to compute the diffusive fluid entrainment after the vortex ring formation.
Dabiri et al. suggested that the entrainment fraction lies between 30% to
40% in these two cases. Müller & Didden (1980) estimated the entrainment
fraction to be approximately 40% in their experiment. In both the cases, the
computed entrainment fractions lie between 30% to 40% which agree well
with the experimental results.
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Figure 2.4: (a) Instantaneous streamlines. (b) Instantaneous streamlines in
a reference frame that moves with the vortex ring. The limiting streamline
shows the extent of the vortex ring or ‘vortex bubble’. (c) The computed
entrainment fraction using ‘vortex bubble’ approach for two different stroke
ratios: -◦-, L/D = 2; -⋄-, L/D = 4.
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Figure 2.5: Instantaneous contours of passive scalar on z = 0 plane for L/D
= 2 at t∗=(a) 3.024, (b) 6.552. Note the scalar mixing in the core of the
vortex ring and downstream scalar deposition as the vortex ring propagates.
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Figure 2.6: Instantaneous contours of passive scalar on z = 0 plane for L/D
= 6 at t∗=(a) 6.048 and (b) 10.08. Note the trailing column behind the
vortex ring.
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2.4.2 Scalar mixing

The transport of passive scalar is used to study the mixing in vortex rings.
The Schmidt number Sc of the scalar is 1.0.

Scalar field

Figures 2.5 and 2.6 contrast instantaneous scalar contours on the symmetry
plane (z = 0) for stroke ratios equal to 2 and 6. The scalar profiles show
three distinct regions. In the ring core, boundary layer fluid from the nozzle
is stretched, and mixed with entrained ambient fluid. Details of the entrain-
ment of ambient fluid are discussed in the next section. At the boundary of
the ring, the scalar diffuses because of the gradient between ring fluid and
the ambient fluid. This diffused scalar is deposited by the ring in its wake
(low velocity region), by a combination of its rotational velocity around the
toroidal core, and its own propagation velocity. The amount of this fluid
in the wake increases as the ring propagates. Similar downstream scalar
deposition is observed by James & Madnia (1996). The fluid in the region
surrounded by the toroidal core is mixed by diffusion because of the gradient
at the interface of this region and toroidal core. The scalar in the trailing jet
also diffuses into the ambient fluid.

The evolution of scalar inside the vortex ring can be quantitatively stud-
ied by examining profiles of the scalar along the line (shown in figures 2.5a
and 2.5b) passing through the center (position of maximum vorticity) of the
toroidal core of the vortex ring. Figures 2.7a and 2.7b show one half of the
scalar profiles (the other half is identical) for L/D = 2 and L/D = 6. The
curves corresponds to different time instants after ring formation. The peak
scalar concentration is equal to 1.0 across almost half the radial extent of
the ring at t∗ = 2.016 for L/D = 2 in figure 2.7(a). Past x ∼ 0.5D, there
is a sudden drop in the concentration. This is due to the entrained ambient
fluid during the formation phase. The small region (0.65 < x/D < 0.85)
towards the boundary of the ring is filled with stretched boundary layer fluid
from nozzle and the gradients near this region are sharp as expected. At
later times, the width of the region containing peak scalar concentration
near the axis of symmetry decreases rapidly. Scalar contours and profiles for
L/D = 2 suggest that the vortex core is the region of significant mixing dur-
ing the initial phases. However, at later time after formation, the maximum
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Figure 2.7: (a) Time evolution of variation of scalar concentration along
the line passing through the cores of the vortex ring for L/D = 2: ,
t∗ = 2.016; , t∗ = 3.024; , t∗ = 4.032; , t∗ = 5.040; ,
t∗ = 6.552.(c) Radial variation of scalar concentration along the line passing
through the cores of the vortex ring for L/D = 6: , t∗ = 5.04; ,
t∗ = 14.1.

scalar concentration is found near the core region of the ring. At t∗ = 6.552,
the sharp gradients inside the vortex ring have disappeared, and peak scalar
concentration is observed around the core of the vortex ring. These profiles
flatten at later times. Note that past x/D = 1, the scalar concentration is
negligible even when the ring propagates. One would expect viscous diffu-
sion to gradually increase the scalar concentration beyond x/D = 1. The
reason for this behavior is that the time scale of ring propagation is faster
than the diffusion time scale. As a result, scalar that diffuses from the edge
of the ring is deposited in the wake of the ring. Figure 5(b) shows that there
is considerable amount of scalar deposition on the downstream side of the
ring for L/D = 2. Note that global conservation of the scalar was confirmed
by computing the average scalar concentration c = (

∫

V CdV ) /V , where V
denotes the volume of the domain. For all stroke ratios, c was found to be
constant after the inflow stops.

The scalar field is quite different in the case of L/D = 6. The basic
difference is that all the scalar carrying fluid issuing from the nozzle does not
go into the vortex ring. Scalar contours in figure 2.6 shows the trailing column
of very high scalar concentration. The scalar profiles in figures 2.7(a) and
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Figure 2.8: (a) (Left) Instantaneous streamlines on (z = 0) plane along with
contours of scalar for L/D = 2 at t∗= 1.008. (Right) Variation of u velocity
and scalar concentration along the line AA′ at t∗= 1.008: , u/D; ,
C/C0 scalar concentration.(b) A horizontal cross–section of the flow-field at
y/D = 0.1 at t∗= 1.008. Contours of scalar along with in–plane velocity
vectors. Note the length and direction of the velocity vectors in the ambient
field.

2.7(b) suggest that the qualitative behavior of scalar field inside the vortex
ring is similar in both cases of stroke ratios. But the mixing process is much
slower in the case of L/D = 6 as compared to L/D = 2. For example, the
profile at t∗ = 5.04 for L/D = 2 in figure 2.7(a) is qualitatively similar to
the profile at t∗ = 14.1 for L/D = 6 in figure 2.7(b). The vortex ring with
L/D = 6 takes much larger time to attain a similar scalar profile inside the
vortex ring.

Entrainment during formation

Figure 2.8(a) shows the instantaneous streamlines in the near field for L/D =
2 at t∗ = 1.008, and the u–velocity profile and scalar concentration along the
line AA′ (shown as dotted white line). As the ring forms, (t∗ < 2.0 in this
case), a region of very low pressure is created just outside the nozzle, at
the center of the vortex core. The resulting pressure gradient is directed
towards the vortex center, and causes ambient fluid to be entrained. This
behavior is illustrated in figure 2.8b, which shows strong negative u–velocities
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Figure 2.9: (a) L/D = 6 at t∗= 5.04, variation of u velocity and scalar
concentration along the line BB′ (dotted white line): , u/D; ,
C/C0 scalar concentration. (b) A horizontal cross–section of the trailing jet
at y/D = 0.6 at t∗= 5.04. Contours of scalar along with in–plane velocity
vectors. Note that the in–plane velocity vectors are of zero magnitude. Same
scalar contour levels are used here as in figure 2.8.

near the nozzle–exit, close to the wall. The scalar concentration of the fluid
with negative u–velocity near the wall is near zero, indicating ambient fluid.
Figure 2.8(b) shows a horizontal cross–section at t∗ = 1.008 at a height of
y/D = 0.1. Velocity vectors are shown along with scalar contours. The
velocity vectors show the motion of the ambient fluid toward the edge of the
fluid emanating from the nozzle–exit. These results show that ambient fluid
is radially entrained into the vortex ring, from the near field of the nozzle,
during the formation phase.

For the case of large stroke ratio (L/D = 6), the phenomenon is similar
until t∗ ∼ 3.6 (formation number). After this time, fluid from the nozzle
cannot enter the vortex ring, and instead forms a trailing jet behind the
vortex ring. The vortex ring is largest in size when the stroke ratio equals
the formation number. During formation, the vortex ring entrains ambient
fluid as explained earlier. However, the trailing jet does not entrain ambient
fluid similar to a vortex ring. Figure 2.9(a) shows the u–velocity and scalar
concentration profiles along the line BB′ passing through the core of the
vortex ring with L/D = 6 at t∗ = 5.04. Note that the u–velocity is almost
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zero near the trailing column up to a height of y/D = 1. Figure 2.9b shows
a horizontal cross section of the trailing jet at y/D = 0.6 for L/D = 6 at
t∗ = 5.04. The absence of appreciable radial entrainment is apparent; the
trailing column is mostly surrounded by stationary fluid.

The implication is that if the objective is to maximize mixing, it is best to
avoid producing the trailing column, so that entrainment can be maximized.
A vortex produced with stroke ratio equal to the formation number, entrains
the most ambient fluid, for a given amount of fluid in the nozzle. The volume
of fluid required for stroke ratio equal to 6, is three times the volume required
to create a single vortex ring of stroke ratio 2. The above results suggest that
it would be better to create three successive vortex rings with L/D = 2, or
two successive vortex rings of stroke ratios equal to 3.6 (formation number)
and 2.4, instead of a single vortex ring with L/D = 6. This conclusion, of
course ignores any interaction between the rings.

Rate of mixing

Figure 2.10(a) shows the time variation of the total volume of scalar–containing
fluid (Vsc) for stroke ratios equal to 2 and 6. Vsc is computed as the sum
of all volume elements which have scalar concentrations above a threshold
value (set to 0.01) in the domain above the nozzle exit plane (y/D > 0).
The threshold value of scalar–concentration allows the difference between
the scalar containing fluid and unmixed ambient fluid to be represented. Vsc

can be considered as a measure of the spread of the scalar in the flow–field.
Figure 2.10(a) shows that Vsc increases nearly linearly (at a rate of 1.7) until
t∗ ∼ 2. In general, Vsc increases due to diffusion of scalar from the bound-
aries of the ring, and mixing of entrained ambient fluid inside the vortex
ring. During the very short time (t∗ ≤ 2) of ring formation, entrainment of
ambient fluid dominates, as discussed earlier. The linear rate of increase in
Vsc is therefore, mostly a result of mixing of ambient fluid with nozzle fluid,
in the toroidal core of the ring.

After the inflow stops (t∗ > L/D), Vsc further increases, as shown in
figure 2.10a. This increase is also nearly linear, and its slope, dVsc

dt∗
yields the

rate of volume mixing when the vortex ring propagates. Figure 2.10(b) plots
dVsc

dt∗
after formation (t∗ > L/D) for different stroke ratios. Note that the rate

increases linearly with stroke ratio until the stroke ratio equals the formation
number. For stroke ratios greater than the formation number, the rate falls
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Figure 2.10: (a) Plot of volume of scalar carrying fluid with time for different
stroke ratios: , L/D = 2.0; , L/D = 2.5; , L/D = 3.0; ,
L/D = 3.6; , L/D = 4.5; , L/D = 6. (b) The rate of scalar
volume after formation is plotted against the stroke ratio. The dotted line
separates the two regime of flow - stroke ratio less than formation number
and higher than formation number. (c) Again, the rate of scalar volume is
plotted against the stroke ratio for two different Schmidt numbers: ◦, Sc = 1;
△, Sc = 10. The corresponding flow structures (iso–surface of vorticity) are
also shown for the two regimes.
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below the linear curve. The deviation increases with increasing stroke ratio,
and may be explained as follows.

Recall that stroke ratios smaller than the formation number yield a vortex
ring without trailing column. The size of the vortex ring increases with
increasing stroke ratio, until the formation number is reached, since nearly
all of the nozzle fluid goes into the vortex ring. The largest possible vortex
ring is therefore produced at the formation number. This increase in ring
size results in an increased rate of mixing. As the stroke ratio increases
beyond the formation number, the flow field consists of the leading vortex
ring, and a trailing column. Increasing the stroke ratio does not change the
leading vortex ring; it only increases the length of the trailing column. The
overall entrainment may be thought to be a combination of entrainment by
the leading vortex ring, and entrainment by the trailing column. The relative
contribution of the leading vortex ring to the overall entrainment therefore
decreases as the stroke ratio increases. Recall that the trailing column does
not entrain fluid as effectively as the vortex ring. This results in an overall
decrease of entrainment as the stroke ratio increases beyond the formation
number.

The qualitative dependence of the rate of change of scalar carrying fluid
on stroke ratio is found to be independent of Schmidt number Sc. Figure
2.10(c) shows results for Schmidt numbers of 1 and 10. Even for Sc = 10, the
rate increases linearly with stroke ratio until formation number, and deviates
away from the linear curve for stroke ratios higher than formation number.
The scalar diffuses less at higher Schmidt number, which leads to lower rate
at the same stroke ratio. Since entrainment does not depend on Schmidt
number, the qualitative behavior of the curves shown in figure 2.10(c) do not
change with Schmidt number.

2.5 Summary

Direct numerical simulation of passive scalar mixing in vortex rings is per-
formed, and the effect of stroke ratio on entrainment and mixing is examined.
Computed results for circulation and formation number agree well with ex-
perimental values. Instantaneous scalar profiles inside the vortex rings are
used to contrast the mixing in vortex rings whose stroke ratio is smaller than
the formation number, to rings whose stroke ratio is greater. The results
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show the spiral roll–up of nozzle fluid, and its mixing with entrained ambi-
ent fluid in the toroidal core of the ring. As the ring forms, it rapidly entrains
ambient fluid from the near–field of the nozzle exit. For stroke ratios greater
than the formation number, this entrainment is totally absent in the trailing
column. The rate of change of scalar–carrying fluid after ring formation was
examined, and seen to vary linearly with stroke ratio until the formation
number is reached. As the stroke ratio increases beyond the formation num-
ber, the rate increasingly deviates away from the linear curve. This suggests
that generation of the trailing column is best avoided, if the objective is to
entrain and mix as much as ambient fluid as possible. The present results
suggest that the frequency and duty cycle of pulsed jets should be such that
the effective stroke ratio is near the formation number or at least not larger
than formation number. Note however, that our conclusions strictly apply
only to a single vortex ring in stationary fluid; they do not account for the
possible effects of interaction among successive rings, and interaction with
the crossflow.
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Chapter 3

Dynamics & mixing of vortex
rings in crossflow

3.1 Abstract

Direct numerical simulation is used to study the effect of crossflow on the
dynamics, entrainment and mixing characteristics of vortex rings issuing from
a circular nozzle. Three distinct regimes exist, depending on the velocity ratio
(ratio of the average nozzle exit velocity to free stream crossflow velocity) and
stroke ratio (ratio of stroke length to nozzle exit diameter). Coherent vortex
rings are not obtained at velocity ratios below approximately 2. At these low
velocity ratios, the vorticity in the crossflow boundary layer inhibits roll–up
of the nozzle boundary layer at the leading edge. As a result, a hairpin vortex
forms instead of a vortex ring. For large stroke ratios and velocity ratio below
2, a series of hairpin vortices are shed downstream. The shedding is quite
periodic for very low Reynolds numbers. For velocity ratios above 2, two
regimes are obtained depending upon the stroke ratio. Lower stroke ratios
yield a coherent asymmetric vortex ring, while higher stroke ratios yield an
asymmetric vortex ring accompanied by a trailing column of vorticity. These
two regimes are separated by a transition stroke ratio whose value decreases
with decreasing velocity ratio. For very high values of the velocity ratio, the
transition stroke ratio approaches the ‘formation number’ defined by Gharib
et al. (1998). In the absence of trailing vorticity, the vortex ring tilts towards
the upstream direction, while the presence of a trailing column causes it to
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tilt downstream. This behavior is explained. In the absence of crossflow,
the trailing column is not very effective at entrainment, and is best avoided
for optimal mixing and entrainment (Sau & Mahesh 2007). However, in the
presence of crossflow, the trailing column is found to contribute significantly
to the overall mixing and entrainment. The trailing column interacts with the
crossflow to generate a region of high pressure downstream of the nozzle that
drives crossflow fluid towards the vortex ring. There is an optimal length of
the trailing column for maximum downstream entrainment. A classification
map which categorizes the different regimes is developed.

3.2 Introduction

Jets in cross-flow are central to a variety of important applications such as
dilution holes in combustors, fuel injectors, pollutant dispersion from smoke
stacks, thrust vectoring of turbojets, and V/STOL aircraft. There is there-
fore considerable incentive to actively control jets in crossflow. This paper
is motivated by experimental observations on the use of pulsing to control
the mixing characteristics of jets in crossflow (e.g. Wu et al. 1988, Chang &
Vakili 1995, Eroglu & Briedenthal 2001, Blossey et al. 2001, M’Closkey et

al. 2002, Karagozian et al. 2003 ). It is observed that pulsing the jet results
in the formation of vortex rings whose strength and spacing depend on the
frequency and duty cycle of the jet, for a given jet and crossflow combina-
tion (Eroglu & Briedenthal 2001). The resulting flow appears to improve
mixing rate and increase the entrainment. Some workers (e.g. M’Closkey et

al. 2002, Shapiro et al. 2006) relate the optimal pulse width for maximum
penetration of vortical structures, to the ‘formation number’ proposed by
Gharib et al. 1998. Johari (2006) presents scaling arguments, based on the
motion of individual vortex rings in stationary fluid, for the penetration and
mixing of pulsed jets in crossflow. He proposes classification schemes using
the formation number and stroke ratio obtained from the frequency and duty
cycle of the pulsed jet.

Sau & Mahesh (2007) used DNS to study optimal mixing by a single
vortex ring in stationary fluid. They considered two Schmidt numbers and
a range of stroke ratios. The formation number was found to yield the max-
imum entrainment for both Schmidt numbers. This behavior was explained
by noting that the entrainment was a combination of that due to the leading
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vortex ring, and that due to the trailing column of vorticity. The entrainment
by the trailing column was negligible as compared to that by the vortex ring,
as a result of which the relative contribution of the vortex ring to overall
entrainment decreases beyond the formation number.

The above study ignores the effect of crossflow. This paper therefore
studies the effect of crossflow on the dynamics, mixing and entrainment char-
acteristics of vortex rings. The paper is organized as follows. Section §3.3
discusses the problem and details of the simulations. The effect of crossflow
on ring dynamics is discussed in section §3.4. The case of very low velocity
ratio is presented in section §3.4.2. Entrainment characteristics of vortex
rings and hairpin vortices are presented in section §3.5. The paper concludes
with a classification map of the different flow regimes in section §3.6.

crossflow

(a)

vinflow

x

y

z

x/D

(b)

z/D

Figure 3.1: (a) Schematic of the problem. (b) Horizontal slice of the mesh.

3.3 Simulation details

3.3.1 Problem Statement

Figure 3.1 shows a schematic of the problem, in which a slug of fluid is
pushed through a cylindrical nozzle with 3 : 1 diameter ratio. The nozzle
fluid forms a vortex ring as it exits the nozzle. The vortex ring interacts
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with the crossflow which is directed along the x−direction. The crossflow is
modeled as a laminar boundary layer over a flat plate. Note that the origin
of the coordinate system is located at the center of the nozzle exit plane, and
the nozzle axis points in the y−direction.

In experiments, vortex rings are often generated by a piston pushing a
column of fluid of length L through an orifice of diameter D. In simulations,
this process is modeled by specifying a top–hat velocity profile (Uin) at the
nozzle inflow for a duration of time τ (referred to as piston time duration).
The inflow velocity is zero for time greater than τ . The stroke length and
non–dimensional time are determined using the mean nozzle exit velocity,
U exit which is equivalent to the piston velocity. The stroke length L is there-
fore equal to U exitτ , and the stroke ratio (L/D) is equal to U exitτ/D. The
stroke ratio is varied by changing the piston time duration τ . The velocity
ratio r is defined as the ratio of mean nozzle exit velocity (U exit) to the free
stream crossflow velocity (u∞). The velocity ratio is varied by changing the
crossflow velocity. DNS of single vortex rings are performed for stroke ratios
varying from 1.6 to 8 and crossflow velocity ratios ranging from 1 to 6. The
Reynolds number based on U exit and nozzle exit diameter (D) is 600 in all
cases, except where noted below.

3.3.2 Numerical details

The governing equations are the incompressible Navier Stokes and continuity
equations,

∂ui

∂t
+

∂uiuj

∂xj

= −
∂p

∂xi

+ ν
∂2ui

∂xjxj

,
∂ui

∂xi

= 0, (3.1)

and the passive scalar equation

∂C

∂t
+

∂Cuj

∂xj

=
ν

Sc

∂2C

∂xjxj

. (3.2)

Here ui, p and ν denote the velocities, pressure and kinematic viscosity re-
spectively. C is the concentration of the scalar. The density of the fluid is
assumed constant and is absorbed into the pressure. The numerical scheme
used to solve the Navier–Stokes equations is described in detail by Mahesh
et al. (2004). The algorithm stores the Cartesian velocities and pressure at
the centroids of the cells (control volumes), and stores the face–normal ve-
locities at the centroids of the faces. The algorithm is a predictor–corrector
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scheme which emphasizes discrete energy conservation on unstructured grids.
This property makes the algorithm robust at high Reynolds numbers without
numerical dissipation. The predictor velocities at the control volume cen-
troids are obtained using the viscous and the non–linear terms in equation
3.1; the predictor face–normal velocities are then obtained. The predictor
face–normal velocity is then projected so that continuity is discretely satis-
fied. This yields a Poisson equation for pressure which is solved iteratively
using a multigrid approach. The pressure field is used to update the Carte-
sian control volume velocities. Implicit time–stepping is performed using a
Crank–Nicholson scheme. The algorithm has been validated for a variety of
problems over a range of Reynolds numbers (Mahesh et al. 2004).

The passive scalar is computed using a predictor–corrector method (Mup-
pidi 2006). The scalar field is first advanced using a second–order central
difference scheme. The predicted scalar field is corrected in regions of scalar
overshoot using a first order upwind scheme. This corrector step ensures
that locally, the passive scalar concentration is bounded (i.e. C ∈ [0, 1]).
The scalar is advanced in time explicitly using the second order Adams-
Bashforth scheme in an inner loop. The fluid emerging from the nozzle-exit
has a value of C = 1.0 and the ambient fluid has C = 0.0.

3.3.3 Computational domain & boundary conditions

The computational domain spans 21D× 20D× 16D above the nozzle exit in
the x, y and z directions respectively, and includes a 10D length of nozzle.
The computational mesh consists of unstructured hexahedral elements. A
grid refinement study was performed on grids containing approximately 2.7
million, 3.6 million and 7 million elements. The profiles of nozzle–exit velocity
and vorticity for the three grids were examined. The maximum v velocity
obtained for the 3.6 million grid differs by 0.6% from the 2.7 million grid. The
7 million grid deviates less than 0.1% from the 3.6 million grid. The vorticity
obtained from the 3.6 million grid deviates less than 0.5% from the 7 million
grid. Results from the 7 million grid are presented in the paper. Figure 3.1(b)
shows the horizontal cross section of the mesh (with 3.6 million elements for
clarity). Very fine mesh elements are used near the nozzle exit and along the
direction of the crossflow. The crossflow is simulated as a laminar flow over
a flat plate. The velocity field from the self-similar Blasius boundary layer
solution is specified at the inflow plane of the crossflow, 6D upstream of the
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Figure 3.2: (a) v–velocity profiles at the nozzle exit in the symmetry plane at
t∗ = U exitt/D = 1.0: , without crossflow (r = ∞); , r = 6; ,
r = 3; , r = 2.0; , r = 1.5; , r = 1.0. (b) Corresponding
span-wise vorticity, Ωz/D profiles: , without crossflow (r = ∞); ,
r = 6; , r = 2.0; , r = 1.0.

nozzle exit. The velocity field is such that in the absence of nozzle fluid, the
crossflow has prescribed δ50% at the centre of the nozzle exit. On the spanwise
boundaries (z/D = ±8), the velocity field corresponding to laminar crossflow
over a flat plate is prescribed. Freestream velocity boundary conditions are
specified on the top boundary at y/D = 20. At the nozzle inflow plane
(y/D = −10), a top hat velocity profile is specified:

v(x, z, y/D = −10, t) = vinflow =

{

Uin if t <= τ
0 if t > τ

A zero-gradient boundary condition is used at the outflow (x/D = 24).

3.4 Effect of crossflow on ring dynamics

When the ambient fluid is stationary, the shear layer that emerges from the
nozzle rolls up into an axisymmetric vortex ring. It propagates away from
the nozzle and entrains the ambient fluid radially inwards as it does so. The

38



0 1 2 3 4

0

2

4

6

0 1 2 3 4

0

2

4

6

0 1 2 3 4

0

2

4

6

0 1 2 3 4

0

2

4

6

y/D

x/D

t∗ = 3.0

t∗ = 7.0

t∗ = 13.0

t∗ = 19.0

Figure 3.3: Vorticity contours for L/D = 2 and r = 6 at different time
instants. The solid and dashed lines denote positive and negative values
respectively.

formation number (Gharib et al. 1998) marks the transition between two
possible flow structures – vortex ring and vortex ring with trailing column
of vorticity. A single vortex ring is produced for stroke ratios less than the
formation number, while a vortex ring with trailing column is produced for
larger stroke ratios.

Both the formation and propagation of vortex rings are affected by pres-
ence of crossflow. The crossflow also breaks the axisymmetry of the ring.
Figure 3.2(a) shows the nozzle exit velocity(v) profiles at the symmetry plane
for different velocity ratios at the same instant of time (t∗ = 1.0). The exit
velocity in the absence of the crossflow is also shown. The crossflow momen-
tum decelerates the nozzle fluid on the upstream side (x/D = 5.5). As a
result of mass conservation, the fluid near the downstream side (x/D = 6.5)
accelerates as shown in the figure. The peak velocity on the downstream side
increases with increasing crossflow velocity. For r = 1.0, there is a very small
amount of reverse flow at the upstream side of the nozzle. This is because
the adverse pressure gradient outside the nozzle exit overcomes the favorable
pressure gradient created by the nozzle throat. Profiles of span-wise vorticity
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at the nozzle exit in the symmetry plane are shown in figure 3.2(b). Note
that vorticity increases significantly on the downstream side due to accel-
eration of the nozzle fluid. In contrast, the vorticity in the upstream side
decreases. Also, the location of peak vorticity on the upstream side shifts to
the nozzle right with the increasing crossflow velocity. For very low velocity
ratios (r < 2), the nozzle shear layer at the upstream side does not roll–up
and a complete vortex ring does not form. The low velocity ratio case is dis-
cussed in detail in later sections. The following section examines the effect of
crossflow on a complete vortex ring. Here, the velocity ratio is greater than
2.
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(b)

x/D

(c)

x/D

Figure 3.4: (a) Schematic of vortex ring tilting. (b,c) Vorticity contours for
L/D = 2 at two different crossflow velocities: (b) u∞ = 0.5; (c) u∞ = 1.0.
Note that the tilting increases with increase in the crossflow velocity.

3.4.1 Velocity ratio > 2

For velocity ratio greater than 2, the simulations show that the vortex ring
tilts in the presence of crossflow. Tilting is defined in terms of the angle
between the plane of the vortex ring and the exit plane of the nozzle. The
ring tilts towards the upstream direction for low stroke ratio and tilts towards
the downstream for high stroke ratio. This behavior is discussed in more
detail below.
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Low stroke ratio: upstream tilting

Figure 3.3 shows contours of Ωz vorticity in the symmetry plane (x–y) for
stroke ratio 2 and velocity ratio 6 at different instants of time. Note that
the vortex ring tilts towards the upstream direction as it penetrates into
the crossflow. The induced velocity of the vortex ring opposes the crossflow
velocity which helps the ring to penetrate deeper into the crossflow. This
behavior is consistent with the experiments of Chang & Vakili (1995), who
observed the upstream tilting of vortex rings in low frequency pulsed jets in
crossflow.

The fluid in the vortex ring initially does not have mean horizontal mo-
mentum. The relative horizontal velocity between the crossflow and the
centroids of the vortex ring combines with ring circulation to produce Kutta–
Joukowski lift. It is readily seen that the upstream portion of the ring expe-
riences a downward lift force relative to the downstream portion as shown in
figure 3.4(a). As a result, the ring tilts upstream. Note that this reasoning
is two–dimensional at every cross–section of the ring. Two–dimensional sim-
ulations of a vortex pair in crossflow were therefore performed to test this
hypothesis. The vortex pair was found to tilt upstream as observed here. A
quantitative discussion of Kutta–Joukowski lift on vortex cores is provided
by Ting & Tung (1965) who consider a vortex core of uniform vorticity em-
bedded in a 2D non–uniform stream. They match the near–field and far–field
solutions, and use the Kutta–Joukowski theorem to obtain the resulting force
on the vortex. Figures 3.4(b) and 3.4(c) show vortex rings of stroke ratio 2 in
velocity ratios of 6 and 3. Note that the tilting increases with increase in the
crossflow magnitude. This behavior is consistent with the Kutta–Joukowski
lift being responsible for the tilting.

The vortex ring also deforms in the presence of crossflow. The thickness
of the ring becomes non-uniform as it propagates into the crossflow. Figure
3.5(a) shows λ2 surface of the vortex ring. Note that the downstream side of
the ring is thicker than the upstream side. This deformation of the ring can
be attributed to the strain field experienced by the ring in crossflow. Figure
3.5(b) plots the in–plane velocity magnitude along a curve which encompasses
the circumference of the ring from upstream to downstream side on the plane
of the ring. The velocity field around the ring suggests that a positive velocity
gradient is set up along the ring on the upstream side and a negative velocity
gradient is set up along the ring on the downstream side. The corresponding
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Figure 3.5: (a) λ2-surface of the vortex ring at a distance of around 4D
from the nozzle exit for L/D of 2 at r = 3 . Vorticity contours are plotted
on symmetry plane. Three dimensional vorticity vectors are also shown on
symmetry plane, plane of the ring and iso–surface. (b) In–plane velocity
magnitude on the circumference of the ring from upstream to downstream
side. (c) Schematic to illustrate the velocity gradients along the ring.

velocity gradients experienced by the ring and the resulting deformation is
shown in figure 3.5(c). The upstream side of the ring experiences a positive
velocity gradient and stretches as a result. The vortex tube becomes thinner
due to stretching. The downstream side exhibits the opposite behavior.

High stroke ratio: downstream tilting

For large stroke ratios, vortex rings along with a trailing column of vorticity
are generated. Figure 3.6 shows the time evolution of Ωz contours in the
symmetry plane for stroke ratio of 6 and velocity ratio of 6. Note that a
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vortex ring followed by a trailing column is produced. Also, the leading
vortex ring tilts towards the downstream direction, unlike its behavior at
lower stroke ratios. One other significant difference is that the ring diameter
expands as it propagates downstream (figure 3.6(b)). This behavior is due to
the enhanced downstream entrainment of crossflow fluid, which is explained
later. The ring’s induced velocity has a component along the direction of
the crossflow which favors downstream movement. The trailing column acts
as an obstacle to the crossflow and as a result, the Kutta–Joukowski lift is
not produced. Instead, the crossflow bends the leading vortex ring and the
trailing column along the direction of the crossflow; finally the leading vortex
ring pinches-off from the trailing column.
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Figure 3.6: Vorticity contours in the symmetry plane for L/D = 6 and r = 6
at different time instants.

For a fixed velocity ratio, the stroke ratio determines whether the ring
tilts upstream or downstream. This suggests that there is a transition stroke

ratio which separates these two regimes. So, the transition stroke ratio for
r = 6 is sought and the effect of crossflow velocity ratio on the transition
stroke ratio is examined.
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Figure 3.7: Time evolution of vorticity contours at transition stroke ratio
(L/D = 3.33) for r = 6.

Transition stroke ratio

For a fixed crossflow velocity ratio, the transition stroke ratio is obtained from
simulations at different stroke ratios. The transition stroke ratio for r = 6 is
found to be at L/D = 3.3. The vortex ring tilts in the upstream direction
for stroke ratios below 3.3. For stroke ratios larger than 3.3, the vortex ring
tilts downstream and the ring diameter expands. The ring dynamics at the
transition stroke ratio for r = 6 are shown in figure 3.7. Initially the leading
vortex ring tilts in the downstream direction, but eventually it pinches-off
and tilts in the upstream direction slightly.

The effect of velocity ratio on the transition stroke ratio is examined in
figure 3.8. For r = 3, the transition stroke ratio is found to be 2.3; the
transition stroke ratio decreases as the velocity ratio decreases. We estimate
a ‘transition curve’ which defines the transition stroke ratio as a function of
velocity ratio. Figure 3.8 shows the three transition stroke ratios obtained
at r =3, 4.6 and 6 respectively. The ambient fluid approximates stationary
fluid when the velocity ratio is increased to very high values. Recall that in
stationary fluid, the ‘formation number’ (L/D = 3.6) defines the transition
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Figure 3.8: The transition curve separates two regimes of flow in the presence
of crossflow. The dotted line represents the transition line in stationary flow.

between single vortex ring and vortex ring with trailing column. So, the
transition curve has an asymptote: L/D = 3.6. An exponential curve is
fitted which passes through the three data points and has an asymptote at
L/D = 3.6. This yields the transition stroke ratio (L/D)tr as a function of
velocity ratio r :

(L/D)tr = F0 − A1 exp (−A2r)

where F0 = 3.6 denotes the formation number in stationary fluid, A1 and A2

are constants which are obtained as 5.6 and 0.5 respectively. The transition
curve is only plotted for r > 2 as shown in figure 3.8. It will be shown later
that complete vortex rings do not form for r < 2.

The transition curve has important practical consequences. For a partic-
ular velocity ratio, stroke ratios on the left of the curve shown in figure 3.8
will generate vortex rings which tilt upstream and penetrate into the cross-
flow. The stroke ratios to the right of this curve will generate rings which
tilt downstream and have a trailing column. It will be shown later that the
trailing column significantly improves entrainment in crossflow. In terms of
penetration of the rings into the crossflow, stroke ratios around the transition
curve will provide maximum opposition to the crossflow. For stroke ratios
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higher than the transition stroke ratio, the ring–tilting will produce a com-
ponent of the induced momentum along the crossflow and favor downstream
movement of the ring. Shapiro et. al. (2006) performed experiments in a
pulsed jet in crossflow and reported maximum penetration at two stroke ra-
tios, one in the range of formation number (3.5–4.7) and the other lying in
the range 1.8–2.2. Their jet was acoustically pulsed and r was equal to 2.58.
From our results, it can be inferred that the maximum penetration of the
pulsed jet is due to the formation of vortex rings which tilt upstream and
penetrate deeper into the crossflow. Note that for a velocity ratio r = 2.58,
the stroke ratio from the transition curve is approximately 2.0 which is in
agreement with the experimental observation of Shapiro et. al. (2006).

(a) (b) (c)

Figure 3.9: Effect of Reynolds number for L/D = 6 at r = 6: (a) Re=600
(b) Re=900 (c) Re=1300.

The above behavior is not significantly affected by the Reynolds number
at least in the Reynolds number regime where the rings are stable. Figure
3.9 shows the vorticity field in the symmetry plane for the vortex ring with
L/D = 6 and r = 6 at three different Reynolds number. Note that the
Reynolds number has almost no effect on the tilting of the vortex rings.
As the Reynolds number increases, the vorticity gradients increase and the
instabilities in the trailing jet become more pronounced.

3.4.2 Velocity ratio < 2

The increase in crossflow (i.e. decrease in velocity ratio) causes the vorticity
in the crossflow boundary layer to increase. Thus, for very low velocity ra-
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tios, the vorticity in the crossflow boundary layer starts interacting with the
vorticity of the nozzle boundary layer. The interaction is most significant on
the upstream side of the nozzle exit. Figure 3.10 shows results for three low
velocity ratios: 2, 1.5 and 1. Crossflow boundary layer profiles and vorticity
contours in the symmetry plane are shown at t∗ = 1.0 for each case. Note
that roll–up of the nozzle boundary layer is inhibited on the upstream side.
The vorticity in the emerging boundary layer is cancelled by the opposing
vorticity from the crossflow boundary layer. The vorticity cancellation be-
comes more pronounced as the velocity ratio decreases. For r = 1.0, the
vorticity in the emerging nozzle boundary layer is almost annihilated by the
crossflow boundary layer as shown in figure 3.10(c). So, a complete vortex
ring structure does not form. Instead, a hairpin structure is formed due to
the roll up on the downstream side alone. This formation of hairpin vortices
is similar to that observed in the experiments of Acarlar & Smith (1987) at
velocity ratios much smaller than those used in our simulation.
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Figure 3.10: Low velocity ratio cases: (a) r = 2.0, (b) r = 1.5 and (c) r = 1.0.
Crossflow boundary layer profiles and the vorticity contours in the symmetry
plane are shown at t∗ = 1.0 for each case. Note that the vorticity from the
nozzle boundary layers is cancelled by opposing vorticity in the crossflow
boundary layer at the upstream side of the nozzle exit.
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Large L/D: hairpin vortex shedding

For low velocity ratios and large stroke ratios, a series of hairpin vortices are
shed downstream. Figure 3.11 shows an iso–surface of pressure for L/D =
5 and r = 1.0. Note that once a hairpin vortex is discharged, then the
next hairpin starts to form. This shedding of hairpin vortices is Reynolds
number dependent. Figure 3.12 shows vorticity contours in the symmetry
plane at different Reynolds numbers: 600, 300 and 150. The stroke ratio
L/D = 100 so that the periodic shedding of the hairpins can be observed.
Instantaneous contours of vorticity are shown at t∗ = 20 for each of the
cases. Note that for Re = 600, the vortices are unstable. For lower Reynolds
number, periodic shedding of coherent hairpins is observed as shown. Also,
the shedding frequency depends upon the Reynolds number.

The evolution of hairpin vortices may be explained as follows. Figure
3.13 shows a hairpin structure and its image in the presence of the wall.
Schematics of the hairpin cross-sections in span-wise and symmetry planes
are also shown. The symmetry plane cuts the ‘head’ of the hairpin structure.
The span-wise plane consists of the counter–rotating legs of the hairpin.
The presence of the wall can be modeled by the image–vortices as shown
in the schematic. In the span-wise plane, the counter rotating ‘legs’ follows
the path shown in thick-dotted line in figure 3.13. The legs approach each
other and also move upwards due to their mutual induction and interaction
with the image vortices. On the other hand, the crossflow exerts an upward
Kutta–Joukowski lift force on the head of the hairpin and the image vortex
induces a negative u–velocity. As a result, the portion around the head of
the hairpin tilts as it propagates downstream and becomes normal to the
crossflow direction as shown in figure 3.11. The hairpin structure detaches
from the emerging shear layer due to the particular motion of the hairpin
legs in the presence of the wall. While the hairpin detaches from the shear
layer and is shed downstream, the next hairpin is formed.

These results suggests that for very low velocity ratio and low Reynolds
number, a steady jet in the presence of a crossflow results in a series of hairpin
structures. And if the Reynolds number is very low then the horseshoe-
like vortices are shed in a periodic manner. This suggests that at very low
velocity ratios, the structure of jets in crossflow is quite unlike the classical
structure of jet in crossflow where the counter rotating vortex pair (CVP), a
stationary horseshoe vortex, wake vortices and Kelvin–Helmholtz instability
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vortices characterize the flow (Fric & Roshko 1994). This observation is also
consistent with the experiments of Gopalan et al. (2004) on a turbulent jet
in crossflow at r < 2. They report that a semi-cylindrical vortical layer forms
behind the jet and suggest that this vorticity starts from the jet shear layer.

3.5 Mixing & entrainment characteristics

The mixing of nozzle fluid with the crossflow fluid is studied by the transport
of a passive scalar. The Schmidt number Sc of the scalar is 1.0. Fluid
exiting from the nozzle has scalar concentration of 1. The crossflow fluid
which initially had scalar concentration of zero, mixes with the nozzle fluid
to give intermediate scalar values between zero and one. When the ambient
fluid is stationary, an axisymmetric vortex ring entrains the ambient fluid
radially inward into the core when it forms. The entrained ambient fluid
mixes with the nozzle fluid inside the core. In contrast, the trailing column
is surrounded by quiescent ambient fluid and does not entrain the ambient
flow. The trailing column is much less effective than a single vortex ring in
entraining the ambient fluid and mixing by vortex rings in stationary fluid is
optimal at stroke ratio equal to the formation number (Sau & Mahesh 2007).
The presence of crossflow changes the mixing and entrainment characteristics
completely. As shown above, three different flow regimes exist depending on
the velocity ratio and stroke ratio. The different entrainment mechanisms of
these three different flow regimes are studied below.

3.5.1 Velocity ratio > 2

Figures 3.14(a) and 3.14(b) show scalar contours in crossflow of r = 6 for
vortex rings with stroke ratio 2 and 6 respectively. Distinctly different mixing
and entrainment behavior can be observed. For the single vortex ring shown
in figure 3.14(a), the scalar mixing is almost similar to that in the absence of
crossflow. The vortex ring entrains the ambient fluid during its formation.
The entrained fluid is mixed with the nozzle fluid inside the core and some of
the fluid from the boundary of the vortex ring is deposited behind the ring
as the ring propagates. The crossflow introduces an asymmetry between the
cores of the ring. Figure 3.14(a) suggests that the core on the upstream side
is more mixed than on the downstream side of the ring. This asymmetry in
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scalar mixing can be attributed to the deformation of the ring as explained
in section §3.4.1.

For large stroke ratios, scalar contours in 3.14(b) clearly show that the
mixing on the downstream side is enhanced significantly. This behavior is
similar to that observed in jets in crossflow. As suggested by Muppidi &
Mahesh (2006), when a jet encounters a crossflow, the jets bends and the
cross–section of the jet deforms. This creates a high pressure gradient di-
rected towards the jet on the downstream side. This pressure gradient drives
the flow toward the jet and causes the jet to entrain more fluid on the down-
stream side rather than the upstream side. Similar flow features are observed
in the present case. Figure 3.15 shows an iso–surface of vorticity along with
3D streamlines for L/D = 6 and r = 6. The iso–surface shows the struc-
ture of the ring along with the trailing column. It is interesting to observe
the streamlines and the deformation of the trailing column cross–section on
the downstream side. The streamline clearly show that crossflow fluid goes
around the trailing column and is entrained from the downstream side into
the trailing column and ring. This downstream entrainment is further en-
hanced by the low pressure in the core of the vortex ring. This behavior is in
contrast to that in the absence of crossflow where the trailing column does
not significantly contribute to overall mixing.

Is there an optimal length of trailing column? For low stroke ratios (no
trailing column or very small trailing column), enhancement due to down-
stream entrainment is absent. On the other hand, for very large stroke ratios,
the leading ring would be far away from the high pressure region downstream
of the trailing column and would not contribute to enhance the downstream
pressure gradient.

Optimal downstream pressure gradient

In order to obtain the optimal length of trailing column, the variation of pres-
sure gradient magnitude with the length of the trailing column is computed
for velocity ratio of 3. Figure 3.16 plots the contours of pressure gradient
magnitude (|∇p|) in the symmetry plane at different time instants. The fig-
ure shows that a high pressure gradient magnitude (denoted by |∇p|tr) is
created on the downstream side of the trailing column. Note that |∇p|tr
increases till approximately t∗ = 5.0, following which it decreases. So, for
optimal downstream entrainment, the length of the trailing column should be
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at stroke ratio equal to 5. The effect of the leading ring on the downstream
pressure gradient is shown in figure 3.17. The downstream side of the trail-
ing column is enlarged to show the pressure gradient vectors at two different
time instants. The time instants are chosen when |∇p| is increasing. Note
that the pressure gradient vectors rotate towards the right, in the direction
of the leading vortex ring.

3.5.2 Velocity ratio < 2

Recall that for very low velocity ratio, a hairpin structure forms instead of
a vortex ring, and that a series of hairpins are shed downstream for large
stroke ratios. Figures 3.18(c) and 3.18(d) show the scalar contours in the
symmetry plane for hairpin structures at r = 1 for stroke ratio of 3 and 5
respectively. It is immediately apparent that the mixing behavior is quite
different from that observed at high velocity ratios. These differences are
discussed in detail below.

Entrainment by hairpin legs

Figure 3.19(a) shows the hairpin structures for L/D = 5 at r = 1 along
with scalar contour lines on a span-wise plane at x/D = 1.9. A streamline
emanating from near the nozzle exit is also shown. Figure 3.19(b) shows
scalar contours in the span-wise plane (x/D = 1.9) which cuts the counter–
rotating legs of the hairpin, and some instantaneous streamlines around one
of the hairpin leg–core. A very low pressure region is created at the core.
The resulting pressure gradient causes the crossflow fluid around the legs
to be entrained. This entrainment could also be explained as Biot–Savart
induction by the vortex cores in the hairpin legs. The streamlines in figure
3.19(b) show this entrainment of crossflow fluid by the hairpin legs. To fur-
ther illustrate this behavior, w-velocity and scalar concentration profiles are
plotted in figure 3.19(c) along a line passing through one of the core of hair-
pin legs on the span-wise plane at x/D = 1.9. The figure shows large levels
of w–velocity near the vortex core close to the wall. The scalar concentra-
tion of the fluid with strong w–velocity is close to zero, indicating crossflow
fluid. An interesting point to note here is that the scalar contours due to
the counter–rotating hairpin legs in the span-wise plane appears similar to
that the counter rotating vortex pair (CVP), observed in a jet in crossflow.
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Although in the present case, a CVP does not exist.

3.5.3 Rate of Mixing

The mixing is quantified by computing the rate of change of total volume of
scalar after formation. The procedure is similar to that followed by Sau &
Mahesh (2007) for vortex rings without crossflow. Figure 3.20(a) shows the
total volume of scalar carrying fluid (Vsc) plotted against non-dimensional
time (t∗) for different stroke ratios and velocity ratio of 3. Vsc is computed
as the sum of all volume elements which have scalar concentrations above
a threshold value (set to 0.01) in the domain above the nozzle exit plane
(y/D > 0). The slopes of these volume curves after the formation of the
ring yield the rate of change of total volume of scalar carrying fluid. The
rates are shown in Figure 3.20(b) along with the results for rings without
crossflow. The figure suggests that the crossflow enhances the mixing in each
of the cases. But the enhancement is much higher for larger stroke ratios.
This is due to the enhanced downstream entrainment by the trailing column.
The percentage increase in entrainment rate for each stroke ratio is shown in
figure 3.20(c). For a stroke ratio of 2, the rate of volume change increases only
about 20%. The increase is about 40% for stroke ratio of 3 and about 70%
for stroke ratio 4.5. The percentage increase in rate appears optimal around
stroke ratio of 4.5, which is consistent with optimal downstream pressure
gradient.

The behavior for low velocity ratios is different. Figure 3.21 shows the
total volume of scalar carrying fluid for different stroke ratios and r = 1.
Note that the slopes of the curves after formation are nearly equal. The rate
of change of Vsc in this case is therefore nearly the same at all stroke ratios.
This behavior is due to the formation of hairpin structures at low velocity
ratios. As shown earlier, periodic hairpin vortices are generated at all stroke
ratios. Therefore this regime does not have an optimal stroke ratio which
maximizes entrainment of crossflow fluid.

3.6 Summary: a global classification map

A vortex ring in crossflow can be classified into three different regimes with
differing flow structures, mixing and entrainment characteristics. Figure 3.22
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shows these different regimes in the space of stroke ratio (L/D) and velocity
ratio (r). This ‘global classification map’ includes the transition curve for
r > 2. The transition curve defines the transition from discrete vortex ring
(upstream tilting) to vortex ring with trailing column (downstream tilting).
As the velocity ratio approaches very high values, the flow field approaches
vortex ring in stationary fluid, and consequently, the transition stroke ra-
tio approaches the ‘formation number’. Again, as the stroke ratio increases
toward very large values, the flow field approaches a jet in crossflow. The
regime right of the transition curve is characterized by enhanced downstream
entrainment due to the trailing column structure. And, for a particular veloc-
ity ratio, there is an optimal length of the trailing column. For velocity ratio
approximately less than 2, complete vortex ring structures do not form. This
regime is characterized by the formation of hairpin–like vortex structures.

The global classification map has important implications. It categorizes
the complete space of velocity ratio and stroke ratio into three different
regimes. A desired flow feature can be attained by choosing the correspond-
ing parameter from the map. Consider pulsation of the jet as a means to
control in jets in crossflow. A pulsed jet generates a series of vortex rings.
The equivalent stroke ratio of each vortex ring can be easily derived from
the pulsing parameters (e.g. Strouhal number, duty cycle, waveform). For
example, the equivalent stroke ratio is the inverse of Strouhal number for a
fully modulated pulsed jet with 50% duty cycle and square waveform. Thus,
for a fixed crossflow, the pulsing parameters can be chosen from the map
according to the desired flow structure and entrainment characteristics.
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Figure 3.11: Hairpin structures are shed for L/D = 5 at r = 1. The figures
correspond to t∗ = 5.0.
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Figure 3.12: Vorticity contours in the symmetry plane at t∗ = 20 for r = 1.0
and L/D = 100. (a) Re = 600, (b) Re = 300, (c) Re = 150. Note that
shedding of the hairpin vortices is unstable at Re = 600. The shedding is
very periodic for lower Reynolds number.
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Figure 3.13: Evolution of a hairpin vortex structure in the presence of a wall.
The dotted curves in the spanwise–plane show trajectory of the legs due to
the wall.
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Figure 3.14: Instantaneous scalar contours on the symmetry plane for vortex
ring in crossflow with r = 6 and L/D of (a) 2 & (b) 6. Note asymmetry
in the scalar concentration in the case of small stroke ratio. Also note the
enhanced downstream mixing for the case of large stroke ratio.

Figure 3.15: Iso–surfaces of vorticity along with some 3D streamlines for
L/D = 6 and r = 6. The stream lines show the downstream entrainment of
the crossflow fluid.
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Figure 3.16: Contours of pressure gradient magnitude (|∇p|) at different
times: (a) t∗ = 3.7, (b) t∗ = 5.0, (c) t∗ = 7.0. Note that the pressure gradient
magnitude around the downstream of the trailing column is maximum around
t∗ = 5.0.
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Figure 3.17: Pressure gradient vectors on the symmetry plane near the down-
stream pressure gradient region at two different time instants. (a) ,
t∗ = 3.7; (b) , t∗ = 5.0; Note that the vectors rotate towards the right
in the direction of the vortex ring core.
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Figure 3.18: Instantaneous scalar contours on the symmetry plane for r=1
and L/D of (c) 3 & (d) 5.
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Figure 3.19: Entrainment by hairpin vortex legs. (a) scalar contour lines on a
spanwise cross–section of the hairpin legs at x = 1.9. (b) The corresponding
scalar contour on the spanwise plane along with some in–plane streamlines.
(c) spanwise velocity (w/D) and scalar concentration (C/C0) profiles along
a line passing through one of the core of hairpin legs on the spanwise plane.
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Figure 3.20: (a) Variation of volume of scalar–carrying fluid with time for
different stroke ratios and r = 3: , L/D = 2.0; , L/D = 3.6;

, L/D = 5.0. (b) The rate of change of scalar volume after formation
against the stroke ratio for r = 3: △. The results for the vortex rings in
the absence of crossflow are also shown: ◦. The vertical line denotes the
formation number. (c) Percentage increase in the rates due to crossflow
are plotted against the stroke ratio. Note that the percentage increment is
maximum around L/D = 5.
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Figure 3.21: Variation of volume of scalar–carrying fluid with time for dif-
ferent stroke ratios and r = 1: , L/D = 3.0; , L/D = 4.0; ,
L/D = 5.0; , L/D = 6.0; , L/D = 7.0; , L/D = 8.0. Note
that the slope of the volume curve after formation is almost the same for all
stroke ratios.
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Chapter 4

Optimization of pulsed jets in
crossflow

4.1 Abstract

We use DNS to study the mixing behavior of pulsed jets in crossflow. The
pulse is a square wave and the simulations consider several jet velocity ratios
and pulse conditions. Our objective is to study the effects of pulsing, and to
explain the wide range of optimal pulsing conditions found in experimental
studies of the problem. The central theme is that pulsing generates vortex
rings; the effect of pulsing on transverse jets can therefore be explained by
the behavior of vortex rings in crossflow. Sau and Mahesh (J. Fluid Mech.,
2008) show that vortex rings in crossflow exhibit three distinct flow regimes
depending on stroke ratio and ring velocity ratio. The simulations of pulsed
transverse jets in this paper show that at high velocity ratios, optimal pulse
conditions correspond to the transition of the vortex rings produced by puls-
ing between the different regimes. At low velocity ratios, optimal pulsing
conditions are related to the natural timescale on which hairpin vortices form.
An optimal curve in the space of stroke ratio and velocity ratio is presented.
Data from various experiments are interpreted in terms of the properties of
the equivalent vortex rings and shown to collapse on the optimal curve. The
proposed regime map allows the effects of experimental parameters such as
pulse frequency, duty cycle, modulation, and pulse energy to all be predicted
by determining their effect on the equivalent stroke and velocity ratios.
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4.2 Introduction

Jets in crossflow are central to applications such as dilution holes in combus-
tors, fuel injectors, pollutant dispersion from smoke stacks, thrust vectoring
of turbojets, and V/STOL aircraft. A large body of work therefore exists
(see e.g. the review by Margason 1993). There have been some attempts to
develop control strategies for this flow. Recent experiments (e.g. Wu et al.

1988, Chang & Vakili 1995, Hermanson et al. 1998, Johari et al. 1999, Eroglu
& Breidenthal 2001, Blossey et al. 2001, M’Closkey et al. 2002, Karagozian
et al. 2003, Shapiro et al. 2006) have considered periodic pulsed excitation of
the jet as a means of control, and shown that jet penetration and spread can
be maximized under specific pulsing conditions. The pulsing mechanism has
involved solenoidal valves (Eroglu & Briedenthal 2001), spinning mechanical
valves (Narayanan et al. 2003), and acoustic forcing (Vermuelen et al. 1990,
M’Closkey et al. 2002, Shapiro et al. 2003). The effects of forcing amplitude,
duty cycle (defined as the fraction of time during a period that the pulsing
is ‘on’) and shape of forcing waveform have been considered.

The following observations have been made. Square wave excitation is
more effective than sinusoidal forcing (M’Closkey et al. 2002). We therefore
consider square wave excitation in this paper. Forcing at frequencies that
are dominant near the jet exit does not cause appreciable change in jet pen-
etration. Also, while mixing might be enhanced locally, peak scalar levels
in the far–field remain high (Narayanan et al. 2003). Low frequency forcing
yields significant increase in jet penetration depth (Wu et al. 1988, Johari
et al. 1999, Eroglu & Briedenthal 2001, M’Closkey et al. 2002, Narayanan
et al. 2003). Optimal forcing conditions are configuration and apparatus–
dependent (Shapiro et al. 2003). Also, the optimal frequencies vary over a
wide range (Narayanan et al. 2003). In general, as long as the forcing fre-
quency is low enough, an optimal duty cycle is found to exist (Shapiro et al.
2003). Pulsing might have a greater effect on mixing at low velocity ratios
and lower Reynolds numbers (Eroglu & Briedenthal 2001). Long injection
times yield moderate enhancement for fully pulsed jets, while short injection
times and smaller duty cycle yield significant enhancement over the steady
jet (Johari et al. 1999).

The physical mechanisms that maximize jet penetration are not well un-
derstood; also, scaling laws that allow optimal conditions to be predicted/scaled
are not known. The optimal conditions are typically presented in terms of
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Figure 4.1: Regime map showing three different flow structures of vortex
rings in crossflow (Sau & Mahesh 2008).
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a Strouhal number, St. However, the optimal St can vary from 0.004 to
0.5 between experiments (Narayanan et al. 2003). Some researchers (e.g.
M’Closkey et al. 2002, Shapiro et al. 2003 and Johari 2006) relate op-
timal pulse condition for maximum penetration to the ‘formation number’
proposed by Gharib et al. (1998) for vortex ring formation in a quiescent
medium. Formation number which is a universal timescale, denotes the tran-
sition between two distinct states of vortex rings in stationary fluid – single
vortex ring and vortex ring with trailing column. Johari (2006) proposes
stroke ratio and duty cycle as the only parameters describing pulsed jets in
crossflow. A classification scheme is proposed which is based on the ‘forma-
tion number’. He suggests that discrete vortex rings are created for L/D < 4
and rings with trailing column are produced for L/D > 4. However, Sau
& Mahesh (2008) show that this is only valid in quiescent medium; cross-
flow significantly changes the vortex ring dynamics and mixing properties.
Three regimes for vortex rings are found and transition between these regimes
strongly depends on the crossflow velocity ratio. The scaling used by Johari
(2006) is only based on vortex ring properties in stationary fluid. The effect
of crossflow; i.e jet to crossflow velocity ratio on the vortex rings is ignored.
Furthermore, the critical stroke ratio for deeply penetrating vortical struc-
tures and optimal jet penetration, is approximately one-half of the ‘formation
number’ (M’Closkey et al. 2002, Shapiro et al. 2003). There have been at-
tempts to relate the pulsing to shear layer instabilities in the jet. Megerian et

al. (2007) studied the effect of jet velocity ratio R on shear layer instabilities
in transverse jets. The nature and strength of the instability modes were
found to be significantly different between R > 3.5 and R < 3.5. They sug-
gest that low-level jet forcing does not appreciably influence the shear-layer
response when strong modes are present; low–level forcing has significant
influence when strong modes are absent.

It is readily seen from experimental flow visualization that square wave
pulsing of the jet produces discrete vortex rings. This behavior may be
anticipated, since pulsing would produce starting vortices. The main idea
proposed by this paper is that the effect of pulsing on jets in crossflow can be
explained by considering the behavior of vortex rings in crossflow. We build
on past work by Sau & Mahesh who considered vortex rings in quiescent
flow (2007) and a uniform crossflow (2008) respectively. Sau & Mahesh
(2007) use DNS to study optimal mixing by a single vortex ring in stationary
fluid. They consider two Schmidt numbers and a range of stroke ratios.
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The formation number is found to yield the maximum entrainment for both
Schmidt numbers. Subsequently, Sau & Mahesh (2008) use DNS to study the
effect of crossflow on vortex rings. Three different regimes are found to exist
depending on the stroke ratio (ratio of stroke length to nozzle exit diameter)
and ring velocity ratio (ratio of average nozzle exit velocity to free stream
crossflow velocity). A regime map was obtained (figure 4.1) which categorizes
these three different regimes. For velocity ratio less than approximately 2,
vortex rings do not form. Instead, a hairpin vortex is obtained at these
low velocity ratios. For large stroke ratios and velocity ratios below 2, a
periodic train of hairpin vortices are shed downstream. For velocity ratios
above 2, two regimes are obtained depending upon stroke ratio. Lower stroke
ratios yield a vortex ring tilted upstream, while higher stroke ratios yield a
downstream tilted vortex ring accompanied by a trailing column of vorticity.
A transition curve in the map defines the transition from a discrete vortex
ring to a vortex ring with trailing column. The transition curve is obtained by
fitting a curve which passes through a set of transition stroke ratios obtained
from simulations at different ring velocity ratios and has an asymptote at
L/D = 3.6 (formation number). The transition stroke ratio decreases with
decreasing velocity ratio. For very high values of velocity ratio, the transition
stroke ratio approaches the ‘formation number’.

In this paper, we perform DNS of pulsed jets in crossflow for several jet
velocity ratios and pulse conditions. We show that jet penetration and spread
can be maximized for specific pulse conditions. We transform the pulsing
conditions of the jet into equivalent vortex ring parameters (stroke ratio and
velocity ratio) which are then plotted on the regime map (figure 4.1). The
optimal conditions are seen to collapse onto a curve in the regime map. Data
from several experiments are then considered, the properties of the resulting
vortex rings extracted, and the experimental optimal conditions are also seen
to collapse onto the same optimal curve in the regime map. This paper is
organized as follows. Section 4.3 discusses the problem, provides details of
the simulations and defines the relevant parameters. Simulation results for
high velocity ratios pulsed jets in crossflow are presented in section 4.4. In
section 4.4.3, the simulation results are interpreted in terms of the vortex ring
regime map. Experimental results are analyzed in section 4.5. Simulations of
very low velocity ratio pulsed jets dominated by hairpin vortices are discussed
in section 4.6. The paper concludes with a brief summary in section 4.7.
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Figure 4.2: (a) A schematic of the problem. (b) Typical waveform at the
nozzle exit resulting from a square waveform specified at the nozzle inflow.

4.3 Simulation details

4.3.1 Problem statement

A fully modulated pulsed jet is injected through a cylindrical nozzle with
3 : 1 diameter ratio (figure 4.2a). The nozzle shape of 3:1 diameter ratio
is created using an interpolated B-spline curve. In the symmetry plane, the
curve is interpolated using the following points: (−0.5, 0, 0), (−0.866,−1, 0)
and (−1.732,−1.5, 0). The origin of the coordinate system is located at the
center of the nozzle exit plane, the nozzle axis points in the y−direction,
and the crossflow is along the x−direction. Pulsing causes the nozzle fluid to
form a series of vortex rings as it exits the nozzle. These vortex rings interact
with the crossflow which is modeled as a laminar boundary layer over a flat
plate. A square wave velocity profile is prescribed at the nozzle inflow to
simulate a pulsed jet. Figure 4.2(b) shows a typical velocity waveform at the
center of the nozzle exit plane. Note that the exit velocity waveform is very
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close to the square wave prescribed at the nozzle inflow. In experiments,
the exit-velocity waveform can be quite different from the prescribed inflow
waveform unless some form of control is applied; e.g. M’Closkey et al. (2002)
use a linear compensator in their experiments to obtain a square waveform
at the nozzle–exit.

4.3.2 Numerical method

The numerical scheme solves the incompressible Navier Stokes and continuity
equations

∂ui

∂t
+

∂uiuj

∂xj

= −
∂p

∂xi

+ ν
∂2ui

∂xjxj

,
∂ui

∂xi

= 0 (4.1)

on unstructured grids. Here ui, p and ν denote the velocities, pressure and
kinematic viscosity respectively. The density of the fluid is assumed constant
and is absorbed into the pressure. The numerical scheme is described in detail
by Mahesh, Constantinescu & Moin (2004). The algorithm stores the Carte-
sian velocities and the pressure at the centroids of the cells (control volumes)
and the face normal velocities are stored independently at the centroids of
the faces. The scheme is a predictor–corrector formulation which emphasizes
discrete energy conservation on unstructured grids. This property makes the
algorithm robust at high Reynolds numbers without numerical dissipation.
The predicted velocities at the control volume centroids are obtained using
the viscous and the non–linear terms of equation 4.1 which are then used to
predict the face normal velocities on the faces. The predicted face normal
velocity is projected so that continuity is discretely satisfied. This yields a
Poisson equation for pressure which is solved iteratively using a multigrid
approach. The pressure field is used to update the Cartesian control vol-
ume velocities. Implicit time–stepping is performed using a Crank–Nicholson
scheme. The algorithm has been validated for a variety of problems over a
range of Reynolds numbers (Mahesh et al. 2004).

The passive scalar is computed by solving the advection-diffusion equation

∂C

∂t
+

∂Cuj

∂xj

=
ν

Sc

∂2C

∂xjxj

, (4.2)

where C is the concentration of the scalar. The fluid emerging from the
nozzle-exit has a value of C = 1.0, and the ambient fluid has C = 0.0.
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Figure 4.3: Different trajectories in ring parameter space defined in terms of
stroke ratio L/D and ring velocity ratio rring.

The spatial derivatives are computed using a predictor–corrector method
(Muppidi & Mahesh 2008). The scalar field is first advanced using a second–
order central difference scheme. The predicted scalar field is corrected in
regions of scalar overshoot using a first order upwind scheme. This corrector
step ensures that the passive scalar concentration is locally bounded (i.e.
C ∈ [0, 1]). Also, the scalar is advanced in time using the second order
Adam–Bashforth scheme at a smaller timestep than that used for the velocity
field. The velocity field is first advanced in time; it is then interpolated in
time when needed for the scalar equation.

4.3.3 Computational domain & boundary conditions

The computational domain spans 40D× 40D× 20D above the nozzle exit in
the x, y and z directions respectively, and includes a 10D length of nozzle.
The crossflow is simulated as a laminar flow over a flat plate. The velocity
field from the self-similar Blasius boundary layer solution is specified at the
inflow plane of the crossflow, 7D upstream of the nozzle exit. The velocity
field is such that in the absence of nozzle fluid, the crossflow has prescribed
δ50% at the centre of the nozzle exit. On the spanwise boundaries (z/D =
±10), the velocity field corresponding to laminar crossflow over a flat plate
is prescribed. Freestream velocity boundary conditions are specified on the
top boundary at y/D = 20. At the nozzle inflow plane (y/D = −10),
spatial profile of the specified velocity is a top hat. A zero-gradient boundary
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Vortex ring regime, rring > 2.

Case rring α Modulation Optimal St∗ Optimal L
D

∗

Uncertainty in L
D

∗

I 8.0 20% 100% 0.28 3.5 ±7.1%
II 8.0 30% 100% 0.28 3.5 ±7.1%
III 6.0 20% 100% 0.4 2.5 ±5.0%
IV 4.5 15% 100% 0.5 2.0 ±6.2%
V 4.5 20% 100% 0.5 2.0 ±6.2%
VI 3.5 20% 100% 0.67 1.5 ±8.3%
VII 10.0 35% 100% 0.28 3.5 ±7.1%
VIII 4.5 25% 75% 0.21 2.0 ±6.2%

Table 4.1: Simulations performed and corresponding optimal conditions.

condition is used at the outflow.

4.3.4 Problem parameters

Figure 4.2 shows a schematic of a square wave pulse. The pulse frequency
f may be non–dimensionalized using the mean jet velocity U j (obtained
by averaging nozzle exit velocity over the nozzle cross–section in one time
period T ) and the nozzle exit diameter D. This yields the Strouhal number
St = fD/U j. Duty cycle α is defined as the ratio of pulse width (τ) to the
time period (α = τ/T ). Here, pulse width is the length of time for which
the pulse is ‘on’. For a fully modulated jet, the inflow velocity is set to zero
when the pulse is ‘off’. The peak pulse velocity and free–stream crossflow
velocities are denoted by Up and U∞ respectively. The mean jet to crossflow
velocity ratio rj is defined as the ratio of mean jet velocity U j to U∞. The
Reynolds number based on Up and nozzle exit diameter (D) is 650 for all
simulations in this paper.

The properties of the vortex ring produced during each pulsing cycle
may be related to the pulse parameters as follows. In experiments, vortex
rings are generated by ejecting a column (length L) of fluid though a nozzle
(diameter D). Vortex ring formation is therefore determined by the stroke
ratio, L/D. For a square waveform, the equivalent stroke ratio, L/D can
be obtained from pulsing parameters (e.g. St, α) as follows. In each cycle,
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L = ∆Ujτ = ∆UjαT , where ∆Uj is the peak–to–peak velocity. Hence, the
stroke ratio

L

D
=

(∆Uj) τ

D
=

(∆Uj) α

fD
=

(∆Uj) α

U j

×

(

U j

fD

)

=
(∆Uj) α

U j

×
(

1

St

)

. (4.3)

In the presence of crossflow, another important parameter is the ring velocity
ratio (rring), which is defined as

rring =
∆Uj

U∞

. (4.4)

Note that for fully modulated (100% modulation) pulsed jets, the mean jet
velocity, U j = 1

T

∫

0
T u dt = ∆Ujα. This implies that

L

D
=

1

St
for 100% modulation. (4.5)

L

D
=

(∆Uj) α

U j

×
(

1

St

)

for partial modulation. (4.6)

Note that the vortex ring parameters (L/D, rring) depend on the deviation

of velocity about the mean velocity. On the other hand, the mean jet velocity
ratio depends on the mean jet velocity. This observation allows the vortex
ring parameters to be consistently computed regardless of jet mean velocity
ratio and modulation. Equations 4.3 through 4.5 show how different control
strategies determine different ring properties. Assuming that Uj and U∞ are
fixed, if the duty cycle α is fixed and St is varied, then L/D varies while rring
stays constant – the path AB in figure 4.3. If St is fixed and α is changed,
L/D stays fixed and rring varies (path AC). If both St and rring vary, then

L/D varies along with rring (e.g. path AD).

For a given jet and crossflow combination (rj, U j), there are two inde-
pendent parameters – St and ∆Uj. The parameters traverse paths similar
to AD (with varying duty cycle) as in figure 4.3. Simulations are performed
for fixed ∆Uj (which results in fixed duty cycle), so that there’s only one
independent parameter, St. In this case, parameters traverse a fixed path
like AB in figure 4.3.

The effect of the oncoming crossflow boundary layer is not studied in this
paper.
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4.3.5 Simulation cases

Table 4.1 lists the conditions for the various simulations performed. For
different combinations of ring velocity ratio and duty cycle, the stroke ratio
L/D (inverse of St) is varied and an optimal stroke ratio is identified. The
combination of cases allows the effect of ring velocity ratio and duty cycle
on optimal stroke ratio to be assessed. Note that the ring velocity ratio
is varied by varying the free–stream crossflow velocity. So, for a given ring
velocity ratio and duty cycle, mean jet to crossflow velocity ratio (rj) remains
constant as St is being varied. St ranges from 2.0 to 0.167 which corresponds
to variation of L/D from 0.5 to 6. Table 4.1 also tabulates the optimal
L/D and corresponding optimal St at different ring velocity ratios and duty
cycles. Optimal St corresponds to the the frequency which results in the
maximum overall penetration for a given jet and crossflow combination. The
maximum overall penetration is obtained by the maximum y location of
vorticity or non–zero passive scalar concentration (both yielded the same
condition). The optimal condition is obtained by first narrowing down the
range where the optimum lies and then performing additional simulations
over that range. For example, figure 5 shows simulation results for case II
with L/D = 1.4, 2.0, 3.5 and 6.0 which correspond to St = 0.714, 0.50, 0.28
and 0.167 respectively. However, simulations are also performed for 3.0, 3.25,
3.75, 4.0. In this case, the uncertainty in the optimal stroke ratio is ±7.1%.
Table 4.1 lists the uncertainty in optimal stroke ratio for all cases.

4.4 Simulation results for rring > 2

The behavior of pulsed jets for rring > 2 is discussed in this section. Optimal
pulse conditions at different ring velocity ratios are examined.

4.4.1 A ‘typical’ simulation

Figure 4.4 shows the flow field corresponding to case I in table 4.1. The
ring velocity ratio (rring = 8) and duty cycle (α = 20%) are fixed while

frequency or St is varied: (a) St = 0.714; (b) St = 0.50; (c) St = 0.28; (d)
St = 0.167. Contours of ωz–vorticity (figures 4.4a–d) and the corresponding
scalar contours (figures 4.4e–h) in the symmetry plane are shown. Note
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Figure 4.4: Case I: Contours of z vorticity (fig. a–d) and scalar concentration
(fig. e–h) in symmetry plane. Ring velocity ratio, rring = 8.0 and duty cycle,

α = 20% are fixed (Up = 3.0, U∞ = 0.38). Strouhal number is varied: (a)
& (e) St = 0.714; (b) & (f) St = 0.50; (c) & (g) St = 0.28; (d) & (h)
St = 0.167. Note that maximum penetration is achieved for St = 0.28.
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Figure 4.5: Variation of total volume of scalar carrying fluid with time. Ring
velocity ratio is 8.0, duty cycle is 20% and several stroke ratios are considered.
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that the pulsed jet produces a series of discrete vortex rings in each of the
cases. In figures 4.4(a–c), upstream tilted vortex rings are produced, and
the rings merge and interact further downstream. For St = 0.167, in figure
4.4(d), vortex rings with trailing column are produced. These rings strongly
interact with their trailing column in the near field. Note that as the St
decreases from 0.714 (fig.4.4a) to 0.28 (fig.4.4c), the jet penetration increases.
Further reduction in frequency results in lower jet penetration as observed
in figure 4.4(d). Thus, there exist optimal pulse conditions which maximize
penetration of the jet into the crossflow. The jet penetration is maximum at
St = 0.28 as shown in figure 4.4(c).

In order to quantify mixing, the total volume of scalar carrying fluid is
computed. Schmidt number (Sc) of the scalar is 1. Total volume of scalar
carrying fluid is computed as the sum of all volume elements which have scalar
concentrations above a threshold value (set to 0.01) in the domain above the
nozzle exit plane (y/D > 0). Figure 4.5 shows the time evolution of total
scalar carrying fluid for different St. After the jet exits the domain, the
volume of scalar carrying fluid remains nearly constant. Note that optimal
conditions extracted from the total volume of scalar are consistent with that
obtained from maximum penetration. The total volume of scalar is also
maximum at St = 0.28. The passive scalar contours (fig. 4.4e–h) reveal an
interesting structural feature of pulsed jets in crossflow. Note that (fig. 4.4e–
g) that the jet splits in two streams for St ≥ 0.28. For lower St (e.g. 0.167),
no such splitting is observed and only a single stream of the jet is observed
(fig 4.6h). In case of splitting, the second stream is formed by the ‘wake of the
rings’ being convected by the crossflow. At lower St, the rings merge in the
near–field and the second stream is not pronounced. Fully modulated pulsed
jets in crossflow experiments of Eroglu & Breidenthal (2001) reveal similar
structural properties and dependence on St. As shown in the simulation,
the location of the ring merging moves upstream as St increases. Similar
behavior is observed in the experiments. For very high St (e.g. St > 2), the
pulsed jet behaves similar to a regular jet since the stroke ratio is too small
to produce deeply penetrating rings.

4.4.2 Effect of velocity ratio and duty cycle

Figure 4.6 shows simulation results for case II. Here, conditions are similar
to case I except the duty cycle is 30% instead of 20%. Figures 4.6(a–d) show
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Figure 4.6: Case II: Contours of z vorticity (fig. a–d) in symmetry plane.
Ring velocity ratio, rring = 8.0 and duty cycle, α = 30% are fixed (Up =

3.0, U∞ = 0.38). Strouhal number is varied: (a) & (e) St = 0.714; (b) & (f)
St = 0.50; (c) & (g) St = 0.28; (d) & (h) St = 0.167. Note that maximum
penetration is achieved for St = 0.28.
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contours of ωz–vorticity and figures 4.6(e–h) show the corresponding scalar
contours in the symmetry plane. Note that the rings interact earlier when
the duty cycle is 30%. However, the overall behavior is similar to that at
the lower duty cycle (20 %). Also, note that varying the duty cycle does
not change the optimal Strouhal number. However, for very large duty cycle
e.g. α > 50%, there is no optimal pulsing frequency since the rings interact
in the very near field irrespective of pulsing frequency. The trajectories at
very high duty cycle (α > 50%) are similar to that of a regular transverse
jet. This behavior is pronounced at lower ring velocity ratios (3.0–5.0) as
discussed later.

The optimal forcing conditions are affected by the ring velocity ratio.
Figure 4.7 shows results for case V in table 4.1. The ring velocity ratio
is lower (4.5) than the preceding cases discussed and the duty cycle is 20%.
Figures 4.7(a–e) show contours of vorticity in the symmetry plane at different
Strouhal number: (a) St = 1.0; (b) St = 0.5; (c) St = 0.4; (d) St = 0.333;
(e) St = 0.2. Figures 4.7(f–j) show the corresponding scalar contours in
the symmetry plane. Note that the jet penetration varies with the pulsing
frequency and maximum penetration is obtained at St = 0.5 (fig. 4.7b). This
optimal value is higher than the optimal St obtained at rring = 8.0. Also,
note that the jet splits into two streams near the optimal pulsing frequency.
The ring interactions are much stronger at these low velocity ratios (such
as 4.5) and also the trajectories are lower than the ring velocity ratio of 8.0
(case I & II).

The effect of duty cycle at rring = 4.5 was studied by performing simu-

lations at varying duty cycle. For example, at 15% duty cycle (case IV), the
same optimal St is obtained. As observed for rring = 8, the optimal forcing
does not change when the duty cycle is lowered. As long as the duty cycle
is low enough (but non–zero), e.g. 10% < α < 40%, optimal forcing condi-
tions are found to exist and varying the duty cycle only changes penetration
difference between optimal and non–optimal cases. For very large duty cycle
(α > 50%), the ring interactions occur in the very near field at these low
velocity ratios (3.0–5.0) and the trajectories resemble that of a regular jet
in crossflow. Simulations were also performed at rring = 6 (case III) and

3.5 (case VI) as listed in table 4.1. For both velocity ratios, optimal pulse
conditions are obtained.
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Figure 4.7: Case V: Contours of z vorticity (fig. a–e) and scalar concentration
(fig. f–j) in symmetry plane. Ring velocity ratio, rring = 4.5 and duty

cycle is 20% (Up = 3.0, U∞ = 0.67). Strouhal number is varied: (a) & (f)
St = 1.0; (b) & (g) St = 0.5; (c) & (h) St = 0.4; (d) & (i) St = 0.333; (e) &
(j) St = 0.2. Note that the optimal penetration is obtained at St = 0.5.

4.4.3 Interpretation in terms of regime map

The preceding section showed that an optimal pulsing frequency exists, when
pulsing the jet at fixed ring velocity ratio and duty cycle. These optimal
conditions may be interpreted in terms of the the regime map (figure 4.1) for
single vortex rings in crossflow (Sau & Mahesh 2008). As discussed in section
4.3.4, the pulsing parameters can be transformed into ring parameters. Recall
that a square waveform with 100% modulation yields an equivalent stroke
ratio L/D which is the inverse of St. Also recall that if the mean jet to
crossflow ratio (rj = U j/U∞ and U j = ∆Ujα) is fixed, the product of ring
velocity ratio (rring) and duty cycle (α) is fixed. In each of the cases listed
in table 4.1, the time period of the pulse is varied while keeping the pulse
velocity fixed. Fixing the pulse velocity (∆Uj) yields fixed ring velocity
ratio (since U∞ is fixed), and therefore fixed duty cycle. Varying the time
period results in variation in stroke ratio. Thus, the pulsing conditions can
be transformed into ring parameters and the flow field can be interpreted in
terms of the behavior of vortex rings in crossflow.

Consider case I which was discussed earlier in figure 4.4. Here, rring = 8.0
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Figure 4.8: Simulation conditions are plotted in stroke ratio and ring velocity
ratio coordinates. ◦, case I & II; ∇, case III; ⊓, case IV & V; △, case VI;
�, case VII. The filled–symbols denote the optimal stroke ratio (table 4.1)
at the corresponding ring velocity ratios. The solid curved line denotes the
transition curve for a single vortex ring in crossflow. The horizontal bars
around the optimal stroke ratios denote the uncertainty in each case.
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(a) (b)

Figure 4.9: (a) Ring interactions. (b) Ring–column interactions.

and the equivalent stroke ratios are: (a) 1.4; (b) 2.0; (c) 3.5; (d) 6.0. These
conditions are plotted as circles in the regime map in figure 4.8. The solid
circle corresponds to the optimal stroke ratio, L/D = 3.5. Note that for
stroke ratio less than the transition stroke ratio (L/D ≤ 3.5 or St ≥ 0.28)
in figure 4.4(a–c), the pulsed jet produces a series of upstream tilted vortex
rings without any trailing column of vorticity. Vortex rings with L/D = 1.4
and 2.0 (fig.4.4a & 4.4b respectively) contain far less circulation than rings
with L/D = 3.5 (fig.4.4c). The weaker rings interact in the near field and
the penetration is less. In figure 4.4(c), the upstream tilted vortex rings
contain maximum momentum when L/D approaches the transition stroke
ratio, and therefore penetrate deep into the crossflow before interacting with
each other. On the other hand, vortex rings with a trailing column of vorticity
are produced when the stroke ratio, L/D = 6 is higher than the transition
stroke ratio (figure 4.4(d), St = 0.167). These rings have approximately
the same momentum as L/D = 3.5 (figure 4.4c), but the trailing columns
strongly interact with subsequent ring–column structures in the near field
itself. This interaction prevents deep penetration into the crossflow. Optimal
penetration is therefore obtained at St = 0.28 or L/D = 3.5 for rring = 8.

Simulations are also performed at rring = 10 (case VII). The results are
similar to rring = 8. The optimal condition corresponds to St = 0.28 or

L/D = 3.5 (figure 4.8).
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Figure 4.10: Schematic to explain ring deformation.

Next consider simulations at rring = 4.5 (case V, figure 4.7). The equiv-

alent stroke ratios vary from 1.0 (fig. 4.7a) to 5.0 (fig. 4.7b). The equivalent
vortex ring parameters are plotted using square symbols on the regime map
in figure 4.8. The solid square symbol represents the optimal stroke ratio.
Note that the optimum lies left of the transition curve unlike its behavior at
the higher velocity ratio discussed above. The same behavior is observed for
simulations performed at rring = 6 (case III) and 3.5 (case VI) listed in table
4.1. These two cases are marked by triangles in 4.8. A curve representing
optimal stroke ratios at different velocity ratios can be estimated passing
through the points shown in the figure. Note that this curve coincides with
the transition curve at higher velocity ratios, and falls to the left of the tran-
sition curve at lower ring velocity ratios. The optimal stroke ratio decreases
as the ring velocity ratio decreases. Recall that the transition curve repre-
sents the transition in structure and tilting for single vortex ring in crossflow.
The reason for the shift of optimal condition from the transition curve is due
to the interaction between successive rings. At low ring velocity ratios, the
interaction between successive rings increases as the stroke ratio increases.
This mutual interaction is stronger at lower ring velocity ratios.

4.4.4 Ring Interactions

The interaction between successive rings is qualitatively different between
the regimes that produce upstream tilting vortex rings and downstream tilt-
ing rings with trailing column. In the absence of a trailing column, ring–ring
interactions (figure 4.9a) cause out–of–plane stretching and deformation of
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the rings. Note that as the rings evolve, they stretch in the span-wise direc-
tion and deform out–of–plane to develop a ‘bow–like’ shape. Also, filaments
with opposite span–wise vorticity come closer in the stream–wise direction.
The evolution and deformation of these ring can be explained using self- and
mutual induction (figure 4.10).

When a single vortex ring exits the nozzle, it tilts upstream as explained in
Sau & Mahesh (2008). The subsequent ring will induce a force to expand the
upper ring radially outward similar to the leap-frog mechanism of two vortex
rings. However, the interaction between the streamwise crossflow and the ring
leads to a straining flow in the plane of the ring. The straining flow stretches
the ring in the span–wise direction (stage 1, figure 4.10). The ring evolves into
a tilted elliptic ring. Marshall & Grant (1994) studied the effect of straining
flow on the evolution of vortex rings using linear theory and vortex element
method. They suggest that depending on the degree of straining, either the
ring alternately elongates in the direction of the stretching and compression
of the external flow or the ring monotonically elongates in the direction of the
stretching of the external flow without oscillation. In the present simulations,
the latter scenario is observed. An elliptic ring has smaller distance between
stream–wise filaments; this yields larger self–induced force on the stream–
wise filaments and the ring deforms into a ‘bow–like’ shape in later stages
(figure 4.10, stage 2). When a trailing column is present, (figure 4.9b), the
ring above the column expands and reduces in speed while the trailing column
enters into the ring structure. Even at moderate duty cycle, the trailing
column strongly interacts with the ring below it.

4.4.5 Partially modulated pulsed jets

All simulations discussed thus far, consider pulsed jets with 100% modula-
tion; i.e. the minimum jet velocity during a time period is zero. Note that
percentage modulation is defined as the ratio of the peak–to–peak jet velocity
to maximum jet velocity. The optimal values in figure 4.8 correspond to sim-
ulation cases with 100% modulation. For Partially modulated jets the peak
to peak velocity difference is fixed and the lower bound of the prescribed jet
velocity is nonzero. The equivalent stroke ratio and ring velocity ratio should
be based on the peak–to–peak velocity difference and crossflow free–stream
velocity as defined in section 4.3. When defined in this manner, the optimal
combination of stroke ratio and ring velocity ratio in partially modulated jet
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is the same as fully modulated jet (figure 4.8).
An additional set of simulations were performed for a 75% modulated

jet with ring velocity ratio of 4.5 as shown in figure 4.11. Contours of z
vorticity (fig 4.11a–c) and scalar concentration (fig 4.11d–f) are plotted in
the symmetry plane. The Strouhal number St is varied (St = (a) 0.43, (b)
0.21 and (c) 0.11) while keeping the duty cycle (α = 25%) and ring velocity
ratio (rring = 4.5) constant. As discussed in section 4.3, St = D/L for

100% modulation. On the other hand, for partial modulation, the relation
will involve the base flow. In this particular case, St = 0.43 × D/L. Figure
4.11(b) shows that optimal penetration corresponds to equivalent stroke ratio
of 2. Recall that the optimal stroke ratio was 2 at ring velocity ratio of 4.5
for a fully modulated jet. Thus, optimal conditions can be predicted even for
partial modulation using the equivalent stroke ratio and ring velocity ratio
as shown in figure 4.8.

Note that in all the cases in figure 4.11(d–f), the scalar contours show
multiple streams for the pulsed jet. Even in the regime where the vortex ring
has a trailing column (e.g. fig 4.11g, L/D = 4), the jet splits in two streams
unlike the fully modulated jet. This is because the minimum jet velocity is
non–zero for partially modulated jets. So, the jet basically consists of high
momentum fluid that generates rings and low momentum fluid that stays
close to the wall. The second stream is mainly jet fluid with non–zero jet
velocity during the period when the pulse is ‘off’.

4.4.6 Effect of ‘experimental square’ waveform

The simulations in this paper are performed using square wave excitation at
the nozzle inflow. The corresponding waveform obtained at the nozzle exit
is very close to a square waveform, as discussed in section 4.3. However,
exit waveforms in experiments are not perfect square waves. The effect of
this deviation from a perfect square waveform is therefore investigated. A
simulation is performed with a modified–square waveform corresponding to
the experiments of Shapiro et. al (2006). Figure 4.12(a) shows the wave-
form from one of their experiments (fig 3b, page 1295 of their paper). The
modified–square waveform (fig. 4.12a) is scaled to yield a stroke ratio of 2
and ring velocity ratio of 4.5. The duty cycle of the waveform is 27%. The
equivalent square waveform is shown in figure 4.12(c). Figures 4.12(b) & (d)
show span–wise vorticity contours in the symmetry plane for both waveforms.
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Figure 4.11: The effect of partial modulation (75%). Contours of z vorticity
(fig. a–c) and scalar concentration (fig. e–g) in symmetry plane. Ring
velocity ratio, rring = 4.5 and duty cycle is 25% (U j = 1.75,∆U = 3.0, U∞ =

0.67). Strouhal number or Stroke ratio is varied: (a) & (d) St = 0.43, L/D =
1.0; (b) & (e) St = 0.21, L/D = 2.0; (c) & (f) St = 0.11, L/D = 4. Note
that optimal penetration is obtained at St = 0.21 or equivalent stroke ratio
of 2 and rring = 4.5.
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Figure 4.12: (a) & (b) Massflow rate at the nozzle exit and corresponding
flow field for a waveform similar to the experiments of Shapiro et al. (2006).
(c) & (d) Massflow rate at the nozzle exit and corresponding flow field for a
square waveform. Both waveforms have the same stroke ratio, velocity ratio
and duty cycle.

Note that there is hardly any difference in either trajectory or the vorticity
field. This is because the flow depends largely on the amount of circulation
imparted during the pulse (stroke ratio) and velocity ratio. The circulation
is not significantly affected by the deviations from a perfect square waveform
in the experiments. The flow fields will therefore be consistent as long as the
stroke ratio and velocity ratios are properly computed.

87



Case Uj m/s U∞ rj U
′

j,rms Rej f α or τ τopt ms

1 2.8 1.1 2.58 1.5 1420 44–147 Hz 10–50% 3.0
4 7.2 1.8 4.0 2.3 3660 87–130 Hz 10–50% 1.6

Table 4.2: Experimental Conditions of Shapiro et al. (2006).

4.5 Interpretation of, and comparison to ex-

perimental results

In this section, we consider results from several experiments and interpret the
optimal conditions in terms of the regime map. We show that the optimal
conditions in experiments can be predicted/explained using the stroke ratio
and ring-velocity ratio of the equivalent vortex rings. Also, while the optimal
St or duty cycles vary over a wide range, the regime map shows good collapse
of optimal conditions between the various experiments and the simulations
discussed earlier.

4.5.1 Experiment of Shapiro et al. (2006)

Shapiro et al. (2006) perform controlled experiments of pulsed jets in cross-
flow. They note that specific combinations of pulse widths and forcing fre-
quencies produce deeply penetrating vortex rings and bifurcating jets, and
that the jet penetration is maximum under these conditions. Their experi-
ments consider four different jet and crossflow combinations at two different
mean jet to crossflow velocity ratios, 2.58 and 4.0. Table 4.2 lists experi-
mental conditions for two cases denoted by 1 and 4 in their paper with jet
velocity ratios 2.58 and 4.0 respectively. For each case, the frequency is fixed
and the pulse width is varied such that U

′

j,rms is constant (table 4.2). Since

frequency is fixed and duty cycle is varied such that U
′

j,rms is constant, both
stroke ratio L/D and ring velocity ratio rring vary. As the duty cycle in-

creases, L/D increases and rring decreases. For each experiment of Shapiro

et al. (2006), the parameters can be transformed into ring parameters and
interpreted accordingly.

Figure 4.13 considers case 1 (table 4.2) of Shapiro et al. (2006). Figure
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Figure 4.13: (a) Figure 4 from experiment of Shapiro et al. (2006), reprinted
by permission; mean and instantaneous flow–field (case 1, U

′

j,rms = 1.5 m/s)
with forcing frequency f = 110 Hz for duty cycle ranging from 10% to 50%.
Maximum jet penetration occurs at 30% duty cycle corresponds to optimal
pulse width (τ = 3 ms). (b) The experimental conditions for varying pulse
width or duty cycle are transformed in regime map for four frequencies: ◦,
44 Hz; △, 55 Hz; ⊓, 73.5 Hz; ⊲, 110 Hz. Filled symbols show the optimal
conditions (τ = 3 ms) at corresponding frequencies. The solid line denotes
the transition curve. (c) Optimal conditions from experiments are compared
to simulations. Filled and open symbols correspond to experiment and sim-
ulations respectively.
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4.13(a) reproduces from their paper the mean and instantaneous flow field at
110 Hz when the duty cycle varies from 10% to 50%. Optimal penetration
is obtained at duty cycle of 30% with pulse width of 3 ms. The optimal
pulse widths at the other frequencies (44, 55, 73.5 Hz) are also reported to
have the same value of 3 ms. Figure 4.13(b) shows the corresponding vortex
ring parameters for the four different frequencies (44, 55, 73.5 and 110 Hz
for case 1) using different symbols. The stroke ratios and ring velocity ratios
are computed using the peak–to–peak velocity difference. Note that at a
given frequency, as the pulse width increases at fixed U

′

j,rms = 1.5 m/s,
stroke ratio increases and ring velocity ratio decreases. The optimal pulse
width of 3 ms for each of these frequencies are denoted by solid symbols.
The optimal stroke ratios and ring velocity ratios are also listed in table 4.3.
Note that the optimal conditions lie on the left of the transition curve and
decrease with ring velocity ratio as shown in figure 4.13(b). In figure 4.13(c),
these optimal conditions are compared to optimal stroke ratios obtained in
simulations. Note that good agreement is obtained and the experimental
optimal conditions follow the same trend as the simulations.

The flow structures in figure 4.13(a) are interesting to observe. Below the
optimal duty cycle of 30%, discrete upstream tilted vortex rings are evident.
Note that the rings interact in the near field and the penetration is less at
lower pulse width or duty cycles (10% to 20%). In these cases, the equivalent
stroke ratios are much smaller than their transition value (less than 1) as
noted in figure 4.13(b). These rings therefore contain much less circulation,
which results in lesser penetration. Around the optimal duty cycle (25% to
35%), upstream tilted vortex rings are produced that penetrate deep into the
crossflow before interacting or merging with each other. At even higher duty
cycle (40% to 50%), the rings interact in the very near field and the pulsed
jet looks more like a steady jet. This behavior is similar to that observed in
the simulations in section 4.4.

Case 4 in Shapiro et al.’s experiments examines optimal pulse width at
various frequencies. The experimental conditions for case 4 are listed in table
4.2. The pulse width is varied at fixed frequency such that U

′

j,rms = 2.3
m/s. In this case, the optimal pulse width is found to be 1.6 ms at all the
frequencies. Figure 4.14(a) plots the experimental conditions in the regime
map for three frequencies (87, 96.7 and 124.3 Hz) as the pulse width is varied.
Note that as the pulse width increases, stroke ratio increases and ring velocity
ratio decreases. The optimal conditions are listed in table 4.4 and marked
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Frequency Hz rj Optimal τ Optimal ring parameters
L/D∗ rring

44 2.58 3 ms 1.80 3.93
55 2.58 3 ms 1.68 3.55

73.5 2.58 3 ms 1.50 3.19
110 2.58 3 ms 1.28 2.88

Table 4.3: Case 1 of Shapiro et al.; optimal conditions (U
′

j,rms is matched at
1.5 m/s)
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Figure 4.14: (a) Experimental conditions (case 4 of Shapiro et al., U
′

j,rms =
2.3 m/s) with varying pulse width for different frequencies: ◦, 87 Hz; ⊓, 96.7
Hz; ∇, 124.3 Hz, are plotted in stroke ratio and ring velocity ratio space.
Filled symbols show the optimal conditions with pulse width 1.6 ms. Solid
line denotes the transition curve. (b) Optimal condition for the experiment
is compared with simulations. Filled and open symbols correspond to exper-
iment and simulations respectively.
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Frequency Hz rj Optimal τ Optimal ring parameters
L/D∗ rring

87 4.0 1.6 ms 1.40 3.68
96.7 4.0 1.6 ms 1.34 3.53
124.3 4.0 1.6 ms 1.21 3.19

Table 4.4: Case 4 of Shapiro et al.; Optimal conditions (U
′

j,rms is matched
at 2.3 m/s).

using solid symbols in figure 4.14(a). Figure 4.14(b) compares the optimal
experimental conditions to simulation results. Note that good agreement is
obtained.

Shapiro et al. (2006) also perform experiments where they fix the peak–
to–peak jet velocity excitation amplitude ∆Uj and frequency, while varying
the duty cycle. Note that as the duty cycle increases for fixed ∆Uj, the stroke
ratio increases while ring–velocity ratio stays fixed. Figure 4.15(a) shows the
instantaneous flow field for different duty cycles (10% to 50%) at 85 Hz and
∆Uj = 4.8m/s. The experimental conditions for this case are transformed
into corresponding vortex ring parameters space in figure 4.15(b). Note that
optimal penetration is achieved at duty cycle of 25%. This optimal duty
cycle of 25% at 85 Hz corresponds to L/D of 1.8 at rring = 4.36 (solid

symbol in figure 4.15b). The optimal condition is plotted along with the
simulation results in figure 4.15(c). Note that good agreement is obtained.
The optimal duty cycles for three different frequencies (55, 73.5 and 85 Hz)
and the corresponding ring parameters are listed in table 4.5.

4.5.2 Experiment of Eroglu & Breidenthal (2001)

Eroglu & Breidenthal (2001) study fully modulated pulsed transverse jets
with square wave excitation at 50% duty cycle. Figures 4.16(a)–(d) show the
flow field in their experiments at different pulsing frequencies (a) St = 0.0
(steady jet), (b) St = 0.28, (c) St = 0.42 and (d) St = 0.71. The mean
jet to crossflow velocity ratio is fixed at 2.3 which corresponds to a ring
velocity ratio of 4.6. The equivalent stroke ratios for these cases are shown
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Figure 4.15: (a) Figure 6c from experiment of Shapiro et al. (2006), reprinted
by permission; smoke visualization for experimental case 1, with peak–to–
peak ∆Uj fixed at 4.8 m/s with forcing frequency f = 85 Hz for duty cycle
ranging from 10% to 50%. Maximum jet penetration occurs at 25% duty cy-
cle. (b) Experimental conditions are plotted in stroke ratio and ring velocity
ratio space. Filled symbol shows the optimal condition with duty cycle 25%.
The solid line denotes the transition curve. (c) Optimal condition for the
experiment is compared to simulations. Filled and open symbols correspond
to experiment and simulations respectively.

Frequency Hz rj Optimal α Optimal ring parameters
L/D∗ rring

55 2.58 15% 1.718 4.36
73.5 2.58 20% 1.714 4.36
85 2.58 25% 1.852 4.36

Table 4.5: Case 1 Shapiro et al.; Optimal condition (∆Uj is matched at 4.8
m/s)
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(a) St = 0.0; L/D = ∞ (b) St = 0.28; L/D = 1.8 (c) St = 0.42; L/D = 1.2 (d) St = 0.71; L/D = 0.7

r r
in

g

L/D

0 1 2 3 4 5 6 7 8
2

3

4

5

6

7

8

9
(e)

r r
in

g

L/D

0 1 2 3 4 5 6 7 8
2

3

4

5

6

7

8

9
(f)

Figure 4.16: Results from the experiments of Eroglu & Breidenthal (2001,
permission for reprint is being requested) showing pulsed jets in crossflow at
different Strouhal numbers. Figure (a) shows the steady jet, St = 0.0. Ring
velocity ratio is 4.6 in all cases. The equivalent stroke ratios (L/D) are (b)
1.8, (c) 1.2 and (d) 0.7. Note figure (b) shows the maximum penetration for
L/D = 1.8.
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St L/D Mean structure

0.08 4.42 single trajectory
0.11 3.18 single trajectory
0.19 1.84 multiple trajectory
0.28 1.27 multiple trajectory
0.56 0.64 multiple trajectory

Table 4.6: Experiments ZNMF-JIC (Tomar et al. 2004)

in figures 4.16(a)–(d). It is clear that discrete vortex rings are produced at
St = 0.28 which penetrate the crossflow in the near field and interact/merge
further downstream. Also the jet splits in two streams. As the frequency is
increased to St = 0.42, the location of the first interaction shifts upstream
and the jet penetration is lower. Again, as the frequency is increased to
St = 0.71, the rings interact in the very near field and the penetration is
much lower than the other two cases. This behavior is consistent with that
observed in the simulations. The experimental conditions are transformed
onto the regime map in figure 4.16(e)–(f). Note that the stroke ratio for
optimal penetration lies very close to the optimal stroke ratios obtained in
the simulations.

4.5.3 Zero–Net–Mass–Flux Jet in Crossflow by Tomar
et al. (2004)

Tomar et al. (2004) study the effect of Strouhal number and velocity ratio
on the mean structure of Zero–Net–Mass–Flux Jets in Crossflow (ZNMF–
JIC) using planar laser induced fluorescence. Experiments are performed for
velocity ratios ranging from 2–5 and Strouhal numbers varying from 0.08 to
0.56. They observe two distinct flow regimes depending on St as shown in
figure 4.17(a). Figure 4.17(a) shows the mean structure of the jet as St is
varied at velocity ratio of 5. A single mean jet trajectory is observed for
St < 0.11 and multiple trajectories are observed for St > 0.19. Tomar et

al. (2004) also suggest that the multiple trajectory ZNMF–JIC penetrates
more deeply into the ambient crossflow. Table 4.6 lists the vortex ring pa-
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Figure 4.17: (a) Experiments of Tomar et al. (2004, reproduced by permis-
sion) on ZNMF–JIC reveal that for St >= 0.19 (corresponds to L/D <=
1.84) the mean jet structure has multiple trajectory and for St < 0.11
(L/D > 3.18) the jet has single trajectory. The equivalent ring velocity
ratio for this case correspond to 3.53. (b) Symbols correspond to trans-
formed experimental data in ring parameter space. Filled and open symbols
correspond to multiple and single trajectory structure respectively.
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rameters computed for their experiments. The equivalent stroke ratio ranges
from 0.64–4.42 and the ring velocity ratio varies from 1.41–3.16. Ring pa-
rameters are computed from maximum piston velocity, orifice diameter and
free–stream crossflow velocity. Note that for L/D = 0.64, 1.27 and 1.84,
multiple trajectories are observed while for L/D = 3.18 and 4.42, single tra-
jectories are observed. These conditions are plotted on the regime map in
figure 4.17(b). The experimentally observed behavior is consistent with our
simulations of fully modulated jets in crossflow. When the pulsing produces
single vortex rings without any trailing column, multiple trajectories are ob-
served as shown in figure 4.6(g) and 4.7(g). As observed in their experiments,
the multiple trajectory jets penetrate deeper into the crossflow.

4.6 Simulation results for rring < 2

The behavior of pulsed transverse jets at low velocity ratios is fundamentally
different from that at high velocity ratios. This difference may be traced
back to the behavior of vortex rings in crossflow at low velocity ratios. As
discussed by Sau & Mahesh (2008) and summarized in section 4.2, at low
velocity ratios (less than 2), pulsing into a crossflow produces hairpin vortices
and not vortex rings. The hairpin vortices form on a certain timescale; if the
pulse duration is longer than this timescale, a series of hairpins are shed in
a periodic manner. Even a continuous, low velocity ratio jet sheds hairpins.
This shedding frequency depends on velocity ratio and Reynolds number.
Most of the entrainment of crossflow fluid is due to the hairpin legs.

Here, simulations of continuously pulsed low velocity jets in crossflow
are performed. Optimal pulse frequencies are examined at different velocity
ratios. Note that for a fixed velocity ratio and duty cycle, varying the fre-
quency changes the length of the pulse (stroke ratio). As discussed above, as
long as the pulse length is longer than the timescale on which the hairpins
are shed, hairpin structures will form and shed periodically regardless of the
pulse Strouhal number St or stroke ratio L/D. It is therefore expected that
penetration of the pulsed jet will not change when the pulsing frequency
is varied. The simulation results confirm this behavior. Figure 4.18 shows
results for a velocity ratio of 0.75 with constant duty cycle of 75% at differ-
ent St or L/D. Instantaneous scalar contours are plotted in the symmetry
plane, and show the cross sections of the hairpin heads. The mean mass
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Figure 4.18: Ring velocity ratio = 0.75, duty cycle = 75%: contours of
vorticity and scalar are plotted in the symmetry plane at different stroke
ratios: (a) 1.0, (b) 2.0, (c) 2.5, (d) 3.0, (e) 4.0 and (f) 6.0. (The length scales
on the vertical axes are all y/D.)
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Figure 4.19: Variation of total volume of scalar carrying fluid in the domain
with time. The ring velocity ratio is 0.75, duty cycle is 75% and different
stroke ratios are considered.
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Figure 4.20: Ring velocity ratio = 1.0, duty cycle = 75%. Contours of scalar
in the symmetry plane at different stroke ratios: (a) 2.0, (b) 2.5, (c) 4.0 and
(d) 6.0. (e) Variation of total volume of scalar carrying fluid in the domain
with time. Ring velocity ratio is 1.0, duty cycle is 75% and different stroke
ratios are considered.
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flow rate and scalar injection rate through the nozzle exit are held constant
while the frequency is varied. The total volume of scalar carrying fluid after
initial transients exit the domain(Vsc) is computed as a metric for mixing.
Figure 4.19 shows how the total volume of scalar carrying fluid (Vsc) in the
domain varies with time for various stroke ratios at velocity ratio of 0.75 and
duty cycle of 75%. The initial transients exit the domain around t∗ = 35.
For each L/D, Vsc remains constant after the flow has exited the domain.
This constant value of Vsc is compared between different L/D. Note that
Vsc increases with stroke ratio till L/D = 2.5, then remains approximately
constant as stroke ratio increases. This behavior can be explained as follows.

4.6.1 Timescale of hairpin formation

As mentioned above, there is a natural timescale on which hairpins form
at each velocity ratio and Reynolds number. For lower stroke ratios such as
L/D = 1 or 2, the pulse width is smaller than the natural timescale of hairpin
formation. As a result (figure 4.18a–b), the hairpins are much smaller and
weaker. The legs of these hairpins do not entrain as much fluid compared to
the stronger hairpins produced at higher L/D (e.g. L/D = 3 shown in figure
4.18(d). As L/D increases beyond 3 (4.18e–f), each pulse creates more than
one hairpin, which is then shed downstream. These hairpins are created on
their natural timescale. In this case, the timescale of hairpin formation is
approximately 2.5 (non–dimensionalized using Up and D). This explains why
Vsc increases till L/D = 3 and then remains constant. As long as the time
scale of each pulse is larger than the required natural timescale for hairpin
formation, more mixing will be observed. Again at these very low velocity
ratios, duty cycle does not play much of a role if the velocity ratio is held
constant. This is because the hairpins formed by each pulse are quickly swept
away by the crossflow before they can interact with the subsequent hairpins.
This is why the higher duty cycle is chosen to compare different stroke ratios.
For very low duty cycles; e.g. 15%, the interaction will be even less. It is
found that the duty cycle does not have as large an impact at low velocity
ratios as it does at high velocity ratios.

Similar results are observed for other low velocity ratios. Figure 4.20
shows scalar contours in the symmetry plane for velocity ratio of 1.0 at
different stroke ratios. The duty cycle is kept constant at 75%. Figure
4.20(e) shows the variation of total volume of scalar carrying fluid (Vsc) for
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different stroke ratios. Again, note that the smaller stroke ratio (L/D = 2.0)
in fig. 4.20(a) results in weaker and smaller hairpins. Larger stroke ratios
such as L/D = 4.0, 6.0 (fig.4.20c–d) yield stronger hairpins. The natural
timescale at rring = 1.0 is approximately 3.0. The variation of Vsc in figure

4.20(e) is consistent with this physical behavior.

4.7 Summary

Controlled simulations of fully modulated, laminar, pulsed jets in crossflow
with square–wave excitation are performed. Optimal pulsing conditions for
maximum jet penetration and spread into the crossflow are examined. The
evolution of pulsed jets in crossflow is interpreted in terms of the behavior of
single vortex rings in the presence of crossflow. The regime map in figure 4.1
(Sau & Mahesh 2008) for single vortex rings in crossflow shows that three
different flow regimes exist, depending on the stroke ratio and ring velocity
ratio. The pulse conditions (frequency, duty cycle) can be transformed into
the ring parameters and the flow field can be interpreted using the regime
map. Optimal pulsing conditions from all the simulations fall on a curve in
the regime map. Also, data from a wide range of experiments (Shapiro et

al. 2006, Eroglu & Breidenthal 2001) are interpreted in terms of their vortex
rings and optimal experimental conditions are seen to collapse on the same
optimal curve in the regime map (figure 4.21).

The behavior at high (greater than 2) and low (less than 2) velocity ratios
is fundamentally different. For very high velocity ratios, the rings produced
by successive pulses do not interact, and their behavior is similar to that
of single rings in crossflow. The optimal stroke ratio under these conditions
marks the transition between a vortex ring and vortex ring with trailing col-
umn at a given ring velocity ratio (Sau & Mahesh 2008). The optimal stroke
ratio for pulsed jets decreases as the ring velocity ratio decreases. However,
as the ring velocity ratio decreases, successive rings begin to interact with
each other and the overall penetration decreases. This interaction has the
effect of shifting the optimal stroke ratio to the left of the transition curve.
The jet apparently splits in two streams for stroke ratios which produces
upstream–tilted vortex rings without trailing column. This behavior is ob-
served at stroke ratios around the optimal conditions. The effect of duty
cycle is examined. For very high values of duty cycle, the rings interact in
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Figure 4.21: Optimal pulsing conditions from several experiments are plotted
along with the optimal data from simulations. Note that the data collapse
onto a curve.
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the very near field irrespective of the stroke ratio and no optimum is found.
As long as the duty cycle is low, an optimal penetration is obtained and this
optimal stroke ratio does not change when duty cycle changes.

At very low ring velocity ratios, hairpin structures form, and are shed
periodically. These hairpin structures form on a timescale that depends on
velocity ratio and Reynolds number. Pulsed jet simulations at these low ring
velocity ratios suggest that for optimal mixing, the timescale associated with
each pulse should at least equal or be greater than the natural timescale of
hairpin formation. Hence at very low velocity ratios, large stroke ratios yield
most effective mixing. At very low velocity ratios, duty cycle does not affect
the flow very much if the velocity ratio is held constant. Regardless of the
duty cycle, the hairpins formed by each pulse are swept away by the crossflow
before they can interact with each other.

The main contribution of this paper is to show how optimal pulsing con-
ditions (at least for square wave pulsing) for jets in crossflow can be predicted
in terms of the vortex rings produced by the pulsing. The regime map allows
experimental control parameters such as stroke length, frequency, duty cycle,
kinetic energy of fluctuations etc. to be predicted by relating them to the
ring stroke ratio and velocity ratio. The collapse of data from a number of
experiments and simulations is encouraging in light of the wide scatter that
optimal Strouhal numbers are known to display (Narayanan et al. 2003).
Also, the effect of the crossflow is consistently accounted for in this paper,
and not ignored (e.g. Johari 2006). The proposed idea is valid for both full
and partial modulation, since ring parameters are based on the deviation of
the velocity about the mean. Also, the regime map appears to be relatively
robust, as demonstrated by the agreement between an ideal square waveform
and a non–ideal experimental waveform. The regime map is therefore pro-
posed as a promising approach to predict optimal conditions for pulsed jets
in crossflow.
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